K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:
Xét tam giác vuông $ABD$:

$\tan B=\frac{AD}{BD}(1)$

Lại có:

$\widehat{C}=\widehat{BHD}(=90^0-\widehat{EBC})$

$\Rightarrow \tan C=\tan \widehat{BHD}=\frac{BD}{HD}(2)$

Từ $(1);(2)\Rightarrow \tan B.\tan C=\frac{AD}{BD}.\frac{BD}{HD}=\frac{AD}{HD}$ (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Hình vẽ:
Violympic toán 9

16 tháng 11 2017

Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải. 

Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2

a: Xét ΔADB vuông tại D có DE là đường cao

nên \(AE\cdot AB=AD^2\left(1\right)\)

Xét ΔADC vuông tại D có DF là đường cao

nên \(AF\cdot AC=AD^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

23 tháng 8 2019

đúng đề k v

4 tháng 9 2020

A B C D E F H

Xét ∆ABE và ∆ACF có:

\(\widehat{A}\left(chung\right)\)

\(\widehat{AEB}=\widehat{AFC}\left(=90^0\right)\)

\(\Rightarrow\)∆ABE ~ ∆ACF (g-g)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

Xét ∆AEF và ∆ABC có:

\(\frac{AE}{AB}=\frac{AF}{AC}\left(cmt\right)\)

\(\widehat{A}\left(chung\right)\)\

\(\Rightarrow\)∆AEF ~ ∆ABC (đpcm)

Ta có: \(\tan B=\frac{ÁD}{DB};\tan C=\frac{AD}{DC}\)

Xét ∆ADC và ∆BDH có:

\(\widehat{HBD}=\widehat{CAD}\)( cùng phụ với \(\widehat{C}\))

\(\widehat{ADC}=\widehat{BDH}\left(=90^0\right)\)

\(\Rightarrow\)∆ADC ~ ∆ BDH (g-g)

\(\Rightarrow\frac{AD}{DC}=\frac{BD}{DH}\)

\(\Rightarrow\tan B\cdot\tan C=\frac{AD}{DB}\cdot\frac{AD}{DC}=\frac{AD}{DB}\cdot\frac{BD}{DH}=\frac{AD}{DH}\)(đpcm)