K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AD\cdot AC=AB\cdot AE\left(1\right)\)

Xét ΔANB vuông tại N có NE là đường cao ứng với cạnh huyền AB

nên \(AB\cdot AE=AN^2\left(2\right)\)

Xét ΔAMC vuông tại M có MD là đường cao ứng với cạnh huyền AC
nên \(AD\cdot AC=AM^2\left(3\right)\)

Từ (1), (2) và (3) suy ra AM=AN

13 tháng 7 2021

tam giác AMC vuông tại M có MD là đường cao \(\Rightarrow AM^2=AD.AC\left(1\right)\)

tam giác ANB vuông tại N có NE là đường cao \(\Rightarrow AN^2=AE.AB\left(2\right)\)

Xét \(\Delta AEC\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AEC=\angle ADB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AEC\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AC.AD\left(3\right)\)

Từ (1),(2),(3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A

18 tháng 7 2022

ủa \(\widehat{AMB}=\widehat{ANC}\)  rồi thì △AMN cân rồi cần gì phải đi c/m

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{DAB}\) chung

Do đó: ΔADB∼ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

\(\Leftrightarrow AD\cdot AC=AE\cdot AB\)

\(\Leftrightarrow AM^2=AN^2\)

=>AM=AN

hay ΔAMN cân tại A

a: Xét (O) có

góc ACN là góc nội tiếp chắn cung AN

góc ABM là góc nội tiếp chắn cung AM

góc ABM=góc ACN

Do đó: AM=AN

b: Kẻ tiếp tuyến phụ Ax

=>góc xAC=góc ABC

mà góc ABC=góc AEF

nên góc AEF=góc xAC

=>Ax//FE

=>OA vuông góc với FE