Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM
Xét tam giác ADE và EFC có:
DE = EF (giả thiết)
AE = EC (vì E là trung điểm AC)
AED = FED (đối đỉnh)
=> tam giác ADE = tam giác EFC (cạnh góc cạnh)
=> AD = FC (2 cạnh tương ứng)
=> AE = EC (2 cạnh tương ứng)
=> AC = DF
=> góc A = góc F (2 góc tương ứng)
Xét tam giác ADC và tam giác FCD có
CD: cạnh chung
AD = FC (câu a)
AC = DF (câu a)
=> tam giác ADC = tam giác FCD (cạnh cạnh cạnh)
Vậy tam giác ADC = tam giác FCD
Xét tam giác AMC và tam giác DMB có:
AM =MD (gt )
BM =MC (gt )
goc MAC=goc MDB(so le trong)
=>Tam giac AMC=tam giac DMB(c.g.c)
Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD
=>AC //BD
a)Xét \(\Delta DEC\)và\(\Delta FEA\)có:
EC=AE(E là trung điểm của AC)
\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)
DE=FE(gt)
=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)
=>FA=DC(2 cạnh tương ứng)
b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)
Mà 2 góc này ở vị trí so le trong=>FA//DC
=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)
Xét \(\Delta ADF\)và\(\Delta DBC\)có:
FA=DC(theo phần b)
\(\widehat{FAD}=\widehat{CDB}\)(cmt)
AD=DB(D là trung điểm của AB)
=>DF=BC ; \(\widehat{ADF}=\widehat{DBC}\)
mà \(DF=2DE\) ; Mà 2 góc này ở vị trí đồng vị
=>\(BC=2DE\) ; =>DE//BC
=>DE=\(\frac{1}{2}BC\)
Vậy DE=\(\frac{1}{2}\)BC;DE//BC
a) Xét t/g AEF và t/g CED có :
AE=CE ( E là trung điểm AC)
góc AEF = góc CED ( đối đỉnh)
EF=ED( gt)
=> t/g AEF = t/g CED ( c.g.c)
=> AF=DC ( 2 cạnh tương ứng )
b)
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà DE=EF=1/2 FD
=>DE=1/2 BC ( đpcm)
Lại có : t/g BDC =t/g FCD ( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong
nên DF // BC
hay DE // BC ( E thuộc DF)( đpcm)
a) Xét ΔAEF và ΔCED có
AE=CE(E là trung điểm của AC)
\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)
EF=ED(gt)
Do đó: ΔAEF=ΔCED(c-g-c)
⇒AF=CD(hai cạnh tương ứng)
b) Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒DE//BC và \(DE=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)
Help mk nha. Mk đang cần để nộp bài 15 phút ^^
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC