K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

Help mk nha. Mk đang cần để nộp bài 15 phút ^^

 

Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC

26 tháng 12 2014

(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
  AE=EC(gt)
  DE=EF(gt)
  góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM
 

3 tháng 7 2016

A B C E D F

3 tháng 7 2016

a) Xét \(\Delta\)DEB và \(\Delta\)FEC:

ED = EF

DEB^ = FEC^ (đđ)

EB = EC 

=> \(\Delta\)DEF = \(\Delta\)FEC (c.g.c)

2 câu sau thấy kì kì

6 tháng 11 2016

Xét tam giác ADE và EFC có:

DE = EF (giả thiết)

AE = EC (vì E là trung điểm AC)

AED = FED (đối đỉnh)

=> tam giác ADE = tam giác EFC (cạnh góc cạnh)

=> AD = FC (2 cạnh tương ứng)

=> AE = EC (2 cạnh tương ứng)

=> AC = DF

=> góc A = góc F (2 góc tương ứng)

Xét tam giác ADC và tam giác FCD có

CD: cạnh chung

AD = FC (câu a)

AC = DF (câu a)

=> tam giác ADC = tam giác FCD (cạnh cạnh cạnh)

Vậy tam giác ADC = tam giác FCD

30 tháng 11 2015

Xét tam giác AMC và tam giác DMB có: 

 AM =MD (gt )

 BM =MC (gt )

 goc MAC=goc MDB(so le trong)

=>Tam giac AMC=tam giac DMB(c.g.c)

 Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD 

=>AC //BD 

 

20 tháng 7 2017

a)Xét \(\Delta DEC\)\(\Delta FEA\)có:

EC=AE(E là trung điểm của AC)

\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)

DE=FE(gt)

=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)

=>FA=DC(2 cạnh tương ứng)

b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)

Mà 2 góc này ở vị trí so le trong=>FA//DC

=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)

Xét \(\Delta ADF\)\(\Delta DBC\)có:

FA=DC(theo phần b)

\(\widehat{FAD}=\widehat{CDB}\)(cmt)

AD=DB(D là trung điểm của AB)

=>DF=BC                             ;            \(\widehat{ADF}=\widehat{DBC}\)

\(DF=2DE\)           ;            Mà 2 góc này ở vị trí đồng vị

=>\(BC=2DE\)             ;            =>DE//BC

=>DE=\(\frac{1}{2}BC\)

Vậy DE=\(\frac{1}{2}\)BC;DE//BC

11 tháng 11 2021

TL :

DE = BC  . Xét BD//BF nên các cạnh đều đối diện nhau

HT

11 tháng 11 2021

a) Xét t/g AEF và t/g CED có :

AE=CE ( E là trung điểm AC)

góc AEF = góc CED ( đối đỉnh)

EF=ED( gt)

=> t/g AEF = t/g CED ( c.g.c)

=> AF=DC ( 2 cạnh tương ứng ) 

b)

Xét t/g AED và t/g CEF có:

AE = EC (gt)

AED = CEF ( đối đỉnh)

ED = EF (gt)

Do đó, t/g AED = t/g CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng)

ADE = CFE (2 góc tương ứng)

Mà ADE và CFE là 2 góc so le trong

nên CF // AD hay CF // AB hay CF//DB

Nối đoạn CD

Xét t/g BDC và t/g FCD có:

BD = FC ( cùng = AD)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, t/g BDC = t/g FCD (c.g.c)

=> BC = FD ( 2 cạnh tương ứng )

Mà DE=EF=1/2 FD 

=>DE=1/2 BC ( đpcm)

Lại có : t/g BDC =t/g FCD ( cmt)

=> BCD = FDC (2 góc tương ứng)

Mà BCD và FDC là 2 góc so le trong

nên DF // BC 

hay DE // BC ( E thuộc DF)( đpcm)

a) Xét ΔAEF và ΔCED có 

AE=CE(E là trung điểm của AC)

\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)

EF=ED(gt)

Do đó: ΔAEF=ΔCED(c-g-c)

⇒AF=CD(hai cạnh tương ứng)

b) Xét ΔABC có 

D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒DE//BC và \(DE=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)

7 tháng 2 2021

Dùng kiến thức lớp 7