Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, goc b= goc amn vi la 2 goc dong vi; goc c= goc anm tuong tu
b, la goc vuong vi a song song bc ma cx vuong voi bc nen cx vuong voi a
c, vi ay song song voi a ma a vuong goc voi cx nen ay vuong goc voi cx
Ta có : góc A + góc B +góc C = 180 ( Định lý tổng 3 góc của 1 tam giác )
80 + 50 + góc C = 180
=> góc C = 180 -80 -50 = 50
Ta có: góc BAC + góc CAx = 180 ( kề bù )
80 + góc Cax = 180
=> Góc Cax = 100
Vì AI là tia phân giác của Góc CAx => góc CAy = góc yAx
=> góc CAy = Góc CAx / 2 =100/2 = 50
Ta có ( góc yAC + góc CAB ) + góc BAC = 180 ( ở vị trí trong cùng phía )
Suy ra Ay // BC ( đpcm)
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
a)
Áp dụng định lí tổng ba góc trong một tam giác bằng 180 độ
Xét trong tam giác ABC. Ta có:
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)
\(\widehat{ABC}+3.\widehat{ABC}+2.\widehat{ABC}=180^o\)
=> \(6.\widehat{ABC}=180^o\Rightarrow\widehat{ABC}=30^o\Rightarrow\widehat{BAC}=120^o\Rightarrow\widehat{ACB}=60^o\)
b)
MK//CB => \(\widehat{MKB}=\widehat{CBA}\)(1)
AC//BM => \(\widehat{CBM}=\widehat{ACB}=60^o\Rightarrow\widehat{ABM}=\widehat{ABC}+\widehat{CBM}=30^o+60^o=90^o\)
=> \(AB\perp BM\)=> AB//CM => \(\widehat{MCB}=\widehat{CBA}\)(2)
=> \(\widehat{MCB}=\widehat{MKB}\)
b) Ta có : KB vuông góc với BM
lấy E đối xứng với M qua B
=> K B là đường trung trực của ME
Để chứng minh AE=AM
Xét hai tam giác ABM và ABE bằng nhau theo truowngf hợp c-g-c