K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

- Nhận xét: D luôn nằm giữa H và M.

- Chứng minh:

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

- Nhận xét: D luôn nằm giữa H và M.

- Chứng minh:

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 3 2018

Δ AMB và Δ AMC có: AM chung MB =MC và AC > AB
=> AMC^ > AMB^ => M thuộc CH.(M ở giữa C và H)
AB<AC => B^ > C^ => BAH^ < CAH^ => D thuộc CH.(1)
theo tính chất phân giác:
BD/AB = CD/AC
mà: AC > AB => CD > BD => D thuộc BM (2)
(1) và (2) => D thuộc HM hay D là điểm nằm giữa H và M.

11 tháng 2 2020

Ai đó lm ơn hãy giúp minh đi mà

26 tháng 3 2020

A C H B I K D E O

a, ^DAK + ^BAH = 90

^ACH + ^BAH = 90

=> ^DAK = ^ACH 

xét tam giác AHC và tam giác AKD có : ^AHC = ^AKD = 90

AH = AK do AHIK là hình vuông (gt)

=> tam giác AHC = tam giác AKD (cgv-gnk)

=> AD = AC (đn)

b, có ADEC là hình bình hành mà ^DAC = 90

=> ADEC là hình vuông (dh) => O là trung điểm của CD (tc)

xét tam giác CAD vuông tại A và tam giác CID vuông tại D

=> AO = CD/2 (đl) và OI = CD/2(đl)

=> AO = OI

=> O thuộc đường trung trực của AI (đl)               

có AHIK là hình vuông => HA = HI = KA = KI => H và K thuộc đường trung trực của AI (đl)

=> O;H;K cùng nằm trên đường trung trực của AI 

26 tháng 3 2020

làm nốt ý còn lại của phần b

CEDA là hình vuông (câu b)

=> CD = AE (tc)

OI = CD/2 (cmt)

=> OI =AE/2 

xét tam giác AIE 

=> tam giác AIE vuông I 

=> EI _|_ AI                          

AI _|_ KO do AHIK là hình vuông (gt)

=> KO // EI (đl)

xét tứ giác KOEI 

=> KOEI là hình thang

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{20}{2}=10\left(cm\right)\)

Xét ΔAEF có 

M\(\in\)AE(gt)

B\(\in\)AF(gt)

\(\dfrac{AM}{ME}=\dfrac{AB}{BF}\left(\dfrac{10}{5}=\dfrac{12}{6}=2\right)\)

Do đó: MB//EF(Định lí Ta lét đảo)

hay BC//EF(Đpcm)

a) Cm \(AD\cdot BC=AB\cdot DC\)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(AD\cdot BC=AB\cdot DC\)(đpcm)

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành