Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ANP\) và \(\Delta CNM\) có
\(AN=CN\)
\(\widehat{ANP}=\widehat{CNM}\)
\(NP=NM\)
\(\Rightarrow\Delta ANP=\Delta CNM\)
\(\Rightarrow\widehat{NAP}=\widehat{NCM}\)
\(\Rightarrow\)AP // MC
\(\Rightarrow AP=MC\)
a: MP=12cm
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
Do đó:ΔNMD=ΔNED
Suy ra: DM=DE
hay ΔDME cân tại D
Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!
a,Theo đề bài I, K, L theo thứ tự là trung điểm của các cạnh AB, AC, BC nên ta dễ dàng chứng minh được
IK=12BC, IL=12AC
Suy ra IK=LP, IL=KN, IK//BC, AL//AC nên C^=AKI^ (đồng vị), C^=ILB^ (đồng vị).
Suy ra AKI^=ILB^, do đó IKN^=ILP^
Vậy △IKN=△PLI (cgc)
Suy ra IN=IP và NIK^=IPL^
Do đó NIP^=NIK^+KIL^+LIP^=IPL^+ILB^+LIP^=90∘ (xét △IPL)
Suy ra IN⊥IP
b,MIN^=AIP^ (bằng 90∘+AIN^)
Ta có: △AIP=△MIN (cgc)
c,Từ câu b, ta có: MNI^=API^
Gọi giao điểm của AP với MN là Q, AP với IN là E, ta có: NEQ^=IEP^ (đối đỉnh)
Suy ra ENO^+NEQ^=EPI^+IEP^=90∘
Nên EQN^=90∘.
Vậy AP vuông góc với MN.
Câu a nếu bạn đã học đường trung bình trong ∆ thì có thể vận dụng được ngay.
Xét ∆ABC có:
M: Trung điểm AB
N: Trung điểm AC
=> MN: đường trung bình của ∆ABC
=> MN=1/2BC (ĐL Đường TB trong ∆)
Mà NP=MN => MP=BC
b) Xét ∆AMN và ∆CPN có:
Góc ANM = Góc CNP ( 2 góc đối đỉnh)
MN=NP
AN=NC
=> ∆ AMN = ∆ CPN (cgc)
=> góc MAN = góc PCN ( 2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AM// CP <=> AB //CP
c) Theo mình nghĩ câu c phải là CM MB =CP
Ta có ∆AMN=∆CNP(cmt)
=> AM =CP ( 2 cạnh tương ứng)
Mà AM=MB => MB=CP