K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Hình tự vẽ nha ! 

a/ Xét ΔABM và ΔECM có:

MB=MC (Mlà trung điểm của BC)

góc AMB = góc EMC ( 2 góc đối đỉnh)

MA=ME(giả thiết)

Do đó ΔABM=ΔECM(c.g.c)

b/ vì ΔABM=ΔECM nên góc BAM= góc MEC (2 góc tương ứng)

mà góc BAM và góc MEC là 2 góc ở vị trí so le trong ( khi đoạn thẳng AE cắt AB và CE ở A và E) nên theo dấu hiệu nhận biết 2 đường thẳng song song => AB // CE

22 tháng 12 2021

thank you !!!!!!!!!!!!!!!

19 tháng 12 2021

Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK

Hình thì bn tự lo nha!

a/ Xét ΔABM và ΔECM có:

MB=MC (Mlà trung điểm của BC)

góc AMB = góc EMC ( 2 góc đối đỉnh)

MA=ME(giả thiết)

Do đó ΔABM=ΔECM(c.g.c)

b/ vì ΔABM=ΔECM nên góc BAM= góc MEC (2 góc tương ứng)

mà góc BAM và góc MEC là 2 góc ở vị trí so le trong ( khi đoạn thẳng AE cắt AB và CE ở A và E) nên theo dấu hiệu nhận biết 2 đường thẳng song song => AB // CE

18 tháng 2 2021

cảm ơn bn nhìu nha

 

26 tháng 2 2022

Cho tam giác ABC vuông tại B , M trên tia đối của t là trung điểm của BC. Trên tia AB lấy E sao cho MA=ME chứng minh rằng 

a.Tam giác ABM bằng tam giác ECM

b BC vuông góc với CE

 

.

 

 

a: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔABM=ΔECM

b: Xét tứ giác BACE có

M là trung điểm của BC

M là trung điểm của AE

Do đó: BACE là hình bình hành

Suy ra: CE//AB

hay CE⊥BC

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

24 tháng 2 2021

a) △ABM và △ECM có:

\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)

\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)

b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)

c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)

a) Xét ΔABM và ΔECM có 

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔECM(c-g-c)