K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBHM vuông tại H và ΔCKM vuông tại K có 

MB=MC(M là trung điểm của BC)

\(\widehat{BMH}=\widehat{CMK}\)(hai góc đối đỉnh)

Do đó: ΔBHM=ΔCKM(cạnh huyền-góc nhọn)

⇒BH=CK(hai cạnh tương ứng)

b) Vì AB//CD(gt)

nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc so le trong)

Xét ΔABM và ΔDCM có

\(\widehat{ABM}=\widehat{DCM}\)(cmt)

BM=CM(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔABM=ΔDCM(c-g-c)

⇒AM=DM(hai cạnh tương ứng)

Xét ΔAMC và ΔDMB có

AM=DM(cmt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)

mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đo ΔMAB=ΔMDC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có

AB=DC

góc ABH=góc DCK

Do đo: ΔAHB=ΔDKC

=>AH=DK và BK=CH

11 tháng 4 2020

không biết

10 tháng 2 2022

cứt

 

30 tháng 12 2021

Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)

Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)

30 tháng 12 2021

b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K

Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:

\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)

Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)

\(\Rightarrow AK\perp BI\)tại H

a: Xet ΔBAM có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAM cân tại B

=>BA=BM

b: góc BAO+góc CAO=90 độ

góc BOA+góc OAH=90 độ

mà góc CAO=góc OAH

nên góc BAO=góc BOA

nên ΔBAO cân tại B

=>BA=BO=BM

=>BO=BM

Xét ΔBAC và ΔBMC có

BA=BM

góc ABC=góc MBC

BC chung

=>ΔBAC=ΔBMC

=>góc BMC=90 độ

=>OK vuông góc BM

góc KOM+góc BOK=góc BOM

góc KMO+góc BMH=góc BMO

mà góc BOK=góc BMH; góc BOM=góc BMO

nên góc KOM=góc KMO

=>ΔKMO cân tại K