Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ACI và MCI có chung đường cao từ C và AI=MI
=>SACI=SMCI(1)
Xét tam giác DAI và DMI có chung đường cao từ D và AI=MI
=>SDAI=SDMI(2)
Từ 1 và 2 =>SACD=SMCD
Mặt khác:SMCD=\(\dfrac{1}{2}\)SCBD(chung đường cao từ đỉnh D và CM=\(\dfrac{1}{2}\)BC)
=>SCBD=2SACD
Mà 2 tam giác này chung đường cao từ đỉnh C=>BD=2AD
b)BD=2AD=>AB=3AD
=>SADM=\(\dfrac{1}{3}\)SAMB(chung đường cao từ M,AD=\(\dfrac{1}{3}AB\))
SAMC=SAMB(chung đường cao từ A và MB=MC)
=>SADM=\(\dfrac{1}{3}\)SAMC
Theo câu a:SACI=SMCI=>SACI=\(\dfrac{1}{2}S_{AMC}\)
SDAI=SDMI=>SDAI=\(\dfrac{1}{2}\)SADM
=>SDAI=\(\dfrac{1}{3}\)SACI
mà 2 tam giác này chung đường cao hạ từ A=>CI=3DI
=>CD=4CI
mình k chắc cách này là ngắn nhưng làm đc nha bạn ,hoi dai
Ve duong thang xy qua A va // BC , CD cat xy tai N va Bi cat xy tai F
1_)-cm tam giac AIN = tam giac MIC ( g=c=g)-> AN= MC
-cm tam giac AFI= tam giac BIM ( g=c=g)==> AF=BM
ma MC=BM ( M la trung diem BC) nen AN=AF-> A la trung diem NF
2_) ta co IF= IB ( ta, giac AFI= tam giac BIM)--> OI la trung diem BF
3_) xet tam giac BNF ta co
NI la duong trung tuyen ( I la trungdiem BF)
BA la duongtrung tuyen (A la trung diem NF)
NI cat BA tai D (gt)
--> D la trong tam tam giac BNF--> AD=1/3AB
4_) \(AD=\frac{1}{3}BA->\frac{AD}{1}=\frac{BA}{3}=\frac{BA-AD}{3-1}=\frac{BD}{2}\)
--> \(\frac{AD}{1}=\frac{BD}{2}=>AD=\frac{1}{2}BD\)
( yeu cau Cong chua bang gia k copy nua nhe)
Bạn tự vẽ hình nha
a.
Xét tam giác ABO và tam giác CDO có:
AO = CO (BO là trung truyến của tam giác ABC)
AOB = COD (2 góc đối đỉnh)
BO = DO (gt)
=> Tam giác ABO = Tam giác CDO (c.g.c)
=> BAO = DCO (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD.
b.
BO là trung tuyến của tam giác ABC
=> O là trung điểm của AC
=> AO = CO = \(\frac{1}{2}AC\) (1)
- BO = DO (gt) => CO là trung tuyến của tam giác BCD
- BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD
=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD
=> I là trọng tâm của tam giác BCD.
=> IO = \(\frac{1}{3}OC\) (2)
Thay (1) vào (2), ta có:
IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)
\(\Rightarrow AC=6\times IO\)
c.
AB // CD
=> EBM = DCM (2 góc so le trong)
Xét tam giác EBM và tam giác DCM có:
EBM = DCM (chứng minh trên)
BM = CM (M là trung điểm của BC)
BME = CMD (2 góc đối đỉnh)
=> Tam giác EBM = Tam giác DCM (g.c.g)
=> BE = CD (2 cạnh tương ứng)
mà CD = AB (tam giác ABO = tam giác CDO)
=> BE = AB.
Chúc bạn học tốt