Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GE // AM
\(\Rightarrow\frac{GE}{AM}=\frac{BE}{BM}\) ( Định lý Ta-lét )
Tương tự \(\frac{FE}{AM}=\frac{CE}{CM}=\frac{CE}{BM}\) ( Vì CM = CM )
Cộng các vế hai đẳng thức trên ta có : \(\frac{GE}{AM}+\frac{FE}{AM}=\frac{BE}{BM}+\frac{CE}{BM}\)
\(\Rightarrow\frac{FE+EG}{AM}=\frac{BC}{BM}=2\)
\(\Rightarrow FE+EG=2AM\)
Vậy ...
Tự vẽ hình nhá!
Xét tam giác EFC có EF//AM (gt)
=> \(\dfrac{EF}{AM}=\dfrac{EC}{CM}\) ( hệ quả định lí Ta-let) (1)
Xét tam giác ABM có: EG//AM ( gt)
=> \(\dfrac{EG}{AM}=\dfrac{BE}{BM}\) ( hệ quả định lý Ta-let)
Mà BM = CM ( M là trung điểm của BC)
Nên \(\dfrac{EG}{AM}=\dfrac{BE}{CM}\) (2)
Cộng vế theo vế (1) và (2)
Ta được: \(\dfrac{EF}{AM}+\dfrac{EG}{AM}=\dfrac{EC}{CM}+\dfrac{BE}{CM}\)
hay \(\dfrac{EF+EG}{AM}=\dfrac{BC}{CM}=2\) ( vì BE + EC = BC; BC = 2CM)
Suy ra EF + EG = 2AM ( đpcm)
1) hk vẽ hình đc nha
kẻ CN//AB (N thuộc AD), gọi I là giao điểm của AD và MB
tg BIA đồng dạng với tg BAM; tg BIA động dạng với tg ACN -> tg BAM đồng dạng với tg ACN BA/AC=AM/CN=1 -> CN/AC=AM/AB=1/2 hay CN/AB=AM/AC=1/2 (do AB=Ac) Ta có CN//AB -> CD/BD=CN/AB=1/2
k đúng cho mình nha
2)tg ABM đồng dạng với tg GEB ->GE/AM=BE/BM (1) tg AMC đồng dạng với tg FEC ->FE/AM=CE/CM=CE/BM (2) (1)(2) -> GE/AM+FE/AM=(BE+CE)/BM=2 1/AM(GE+FE)=2 -> GE+FE=2AM
nhớ k nhan
a: Xét tứ giác BEGC có EG//BC
nên BEGC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEGC là hình thang cân
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )