K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

Bạn tự vẽ hình nha.mk ko bt vẽ trên olm

a) Xét tg AMB và tg DMC có:AM=MD (gt)

MB=MC (gt)

AMB=DMC (2 góc đđ)

nên tg AMB= tg DMC  suy ra AB=DC ( cặp cạnh tương ứng),BAM=CDM(cặp góc tương ứng)

b)Xét tg BEM và tg CFM có: BEM=CFM= 90

                                          BM=MC(gt)

                                          EMB=FMC(2 góc đđ)

nên tg BEM= tg CFM(ch-gn) suy ra ME = MF mà M,E,F cùng thược AD 

Suy ra M là trung điểm của EF

c) Xét tg BMD và tg CMA có: BM=Cm (gt)

                                           MD=MA (gt)

                                           BMD=CMA (2 góc đđ)

nên tg BMD =tg CMA hay MDB=MAC(cặp góc tương ứng)

                                mà BAM=CDM(cmt)

nên BAM+MAC=MDB+CDM

hay BAC=CDB

12 tháng 12 2021

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

Trả lời:

     P/s: Mk chỉ làm đc nhiu đây!!!~^-^

a) Xét tg MAB và tg MDC có:

AM = DM (gt)

MB = MC (suy từ gt)

gAMB = gDMC (đđ)

=> tgMAB = tgMDC (c.g.c)

b) Đề nghị sửa thành: AB = CD và AB // CD.

Vì tgMAB = tgMDC (câu a)

=> AB = CD (2 cạnh tt/ư)

và ABMˆABM^ = DCMˆDCM^( 2 góc t/ư)

mà 2 góc này ở vị trí so l trong nên AB // CD.

c) Nối B với D.

Xét tgAMC và tgDMB có:

AM = DM (gt)

gAMC = gDMB (đđ)

CM = BM (suy từ gt)

=> tgAMC = tgDMB (c.g.c)

=> AC = DB (2 canjht /ư)

Xét tgBAC và tgCDB có:

BA = CD (câu b)

BC chung

AC = DB (c/m trên)

=> tgBAC = tgCDB (c.c.c)

                                                  `~Học tốt!~

26 tháng 12 2021

help me

 

26 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

19 tháng 12 2016

A B C D E F M

a) Xét ΔABM và ΔDCM có:

BM=CM(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM=DM(gt)

=>ΔABM=ΔDCM(c.g.c)

b) Vì ΔABM=ΔDCM(cmt)

=>\(\widehat{ABM}=\widehat{DCM}\). Mà hai góc này pử vị trí sole trong

=>AB//DC

c)Xét ΔEBM và ΔFCM có:

\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM=MC(gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

=>ΔEBM=ΔFCM( cạnh huyền-góc nhọn)

=>ME=MF

=>M là trung điểm của EF

31 tháng 5 2017

2015-12-20_100918

a) Xét ΔABM và ΔDCM, có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b) Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC

c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF

10 tháng 10 2019

A B C E M F D

a ) Xét \(\Delta ABM\)và \(\Delta DCB\) có :

BM = CM (gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM = DM (gt)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

Vì : \(\Delta ABM=\Delta DCM\left(cmt\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) . Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow\) AB // DC

c )  Xét \(\Delta EBM\) và \(\Delta FCM\) có :
\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM = MC (gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

\(\Rightarrow\Delta EBM=\Delta FCM\)(cạnh huyền - góc nhọn )

\(\Rightarrow ME=MF\)

\(\Rightarrow M\) là trung điểm của EF ( đpcm)

Chúc bạn học tốt !!!