K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

21 tháng 8 2017

a) Chứng minh được MN//PQ (cùng vuông góc với AC). Chứng minh được MP = QN. Þ ĐPCM.

b) Ta có:

S M N E = 1 2 S M E N C , S N P E = 1 2 S P B N E , S P Q E = 1 2 S , A P E Q S M Q E = 1 2 S Q E M D ⇒ S M N P Q = 1 2 S A B C S .  

c) Chu vi MNPQ = MN + PQ + NP  + QM

= EC + AE + BE + ED = AC + BE + ED.

Trong tam giác BED, BE + ED ³ BD

Þ Chu vi MNPQ ≥ AC + BD

Þ E là tâm của hình vuông ABCD

20 tháng 12 2020

a) Xét tứ giác MNCP có

MN // CP(gt)

MP // NC(gt)

\(\Rightarrow\)Tứ giác MNCP là hình bình hành

b) Xét hình bình hành MNCP là hình thoi 

\(\Leftrightarrow\)MN=MP

\(\Leftrightarrow\)Tam giác AMN= Tam giác MBP

Xét tam giác AMN và tam giác MBP có

\(\widehat{AMN}\)\(\widehat{MBP}\)

\(\widehat{BMP}\)\(\widehat{MAN}\)

Vậy để Tam giác AMN= Tam giác MBP 

\(\Leftrightarrow\)AM=MB

Vậy khi M là trung điểm của AB thì MNCP là Hình thoi

c) Hình bình hành MNCP là Hình chữ nhật

\(\Leftrightarrow\)\(\widehat{C}\)=90 độ

\(\Leftrightarrow\)Tam giác ABC vuông tại C

Vậy khi Tam giác ABC vuông tại C thì MNCP là Hình chữ nhật