K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

Kẻ \(MI\text{//}AC;DH\bot MN\left(H\in MN\right);IK\bot MN\left(K\in MN\right)\)

\(DHKI\) là hcn \(\Rightarrow DH=IK\Rightarrow S_{DMN}=S_{IMN}\)

Ta có \(\left\{{}\begin{matrix}\Delta AMN\sim\Delta ABC\\\Delta BMI\sim\Delta ABC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2\\\dfrac{S_{BMI}}{S_{ABC}}=\left(\dfrac{BM}{AB}\right)^2\end{matrix}\right.\)

\(\Rightarrow\dfrac{S_{AMN}+S_{BMI}}{S_{AB}}=\dfrac{AM^2+BM^2}{AB^2}\ge\dfrac{\dfrac{1}{2}\left(AM+MB\right)^2}{AB^2}\)

\(\Rightarrow\dfrac{S_{ABC}-S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\\ \Rightarrow1-\dfrac{S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\Rightarrow\dfrac{S_{MNCI}}{S_{ABC}}\le\dfrac{1}{2}\\ \Rightarrow S_{MNCI}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow2\cdot S_{DMN}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow S_{DMN}\le\dfrac{1}{4}S_{ABC}\)

Dấu \("="\Leftrightarrow AM=MB\Leftrightarrow M\) là trung điểm \(AB\Leftrightarrow N\) là trung điểm AC

Khi đó d đi qua trung điểm AB và AC

20 tháng 7 2019

A B C O T M N

Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).

Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN

Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN

Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT

Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)

=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn

Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
NV
14 tháng 3 2022

Từ M kẻ \(MH\perp AC\Rightarrow MH=AM.sinA\)

\(S_{AMN}=\dfrac{1}{2}MH.AB=\dfrac{1}{2}AM.AN.sinA\)

Mà góc A cố định \(\Rightarrow S_{min}\) khi \(AM.AN\) đạt min

Qua B, C lần lượt kẻ các đường thẳng song song d, cắt AD tại E và F

\(\Delta BDE=\Delta CDF\left(g.c.g\right)\Rightarrow DE=DF\)

Talet: \(\dfrac{AB}{AM}=\dfrac{AE}{AI}\) ; \(\dfrac{AC}{AN}=\dfrac{AF}{AI}\)

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AE+AF}{AI}=\dfrac{\left(AD-DE\right)+\left(AD+DF\right)}{AI}=\dfrac{2AD}{AI}\)

Do A; I; D cố định \(\Rightarrow\dfrac{2AD}{AI}\) cố định

\(\dfrac{2AD}{AI}=\dfrac{AB}{AM}+\dfrac{AC}{AN}\ge2\sqrt{\dfrac{AB.AC}{AM.AN}}\Rightarrow AM.AN\ge\dfrac{AB.AC.AI^2}{AD^2}\)

Đẳng thức xảy ra khi và chỉ khi \(\dfrac{AB}{AM}=\dfrac{AC}{AN}\Rightarrow d||BC\) theo Talet đảo

NV
14 tháng 3 2022

undefined