K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LC
31 tháng 3 2017
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
Chứng minh :
Vẽ hình bình hành ABMC ta có AB = CM .
Để chứng minh AB = KC ta cần chứng minh KC = CM.
Thật vậy xét tam giác BCE có BC = CE (gt) => tam giác CBE cân tại C => vì góc C1 là góc ngoài của tam giác BCE => mà AC // BM (ta vẽ) => nên BO là tia phân giác của . Hoàn toàn tương tự ta có CD là tia phân giác của góc BCM . Trong tam giác BCM, OB, CO, MO đồng quy tại O => MO là phân tia phân giác của góc CMB
Mà : là hai góc đối của hình bình hành BMCA => MO // với tia phân giác của góc A theo gt tia phân giác của góc A còn song song với OK => K,O,M thẳng hàng.
Ta lại có : mà (hai góc đồng vị) => cân tại C => CK = CM. Kết hợp AB = CM => AB = CK (đpcm)
tk nha bạn
thank you bạn
Bạn tự vẽ hình nha, vẽ hình rồi post lên lâu quá
Vẽ hình bình hành ABMCABMC ta có AB=CMAB=CM
Cần chứng minh KC=CMKC=CM
Xét tam giác BCEBCE có BC=CEBC=CE⇒ΔCBE⇒ΔCBE cân tại CC
⇒ˆCBE=ˆE⇒CBE^=E^
Lại có ˆACB=ˆCBE+ˆE⇒ˆCBE=12ˆACBACB^=CBE^+E^⇒CBE^=12ACB^
Mà AC//BM⇒ˆACB=ˆCBM⇒ˆCBE=12ˆCBMAC//BM⇒ACB^=CBM^⇒CBE^=12CBM^
Nên BOBO là phân giác của ˆCBMCBM^
TƯơng tự ta có CDCD là phân giác của ˆBCMBCM^
Trong ΔBCMΔBCM có OB,CO,MOOB,CO,MO đồng quy tại OO
⇒MO⇒MO là tia phân giác của ˆCMBCMB^
Mà ˆBAC,ˆBMCBAC^,BMC^ là hai góc đối của hình bình hành BMCABMCA
⇒MO⇒MO song song với tia phân giác của góc ˆAA^
Mà tia phân giác góc ˆAA^ song song với OKOK
Nên O,M,KO,M,K thẳng hàng
Ta lại có ˆCMK=12ˆBMC;ˆA=ˆMCMK^=12BMC^;A^=M^
⇒ˆCMK=ˆA2⇒CMK^=A2^ màˆA2=ˆCKMA2^=CKM^
⇒ˆCKM=ˆCMK⇒ΔCKM⇒CKM^=CMK^⇒ΔCKM cân tại CC
⇒CK=CM⇒CK=CM , suy ra ĐPCM