Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
de lam chi can chi doi 2 nam nua la em tra loi dc a
☺☺☺
Đặt \(AF=x.AB\) ; \(AE=y.AC\) ; \(BD=z.BC\) (với \(0< x;y;z< 1\))
Do FH song song BK, áp dụng Talet: \(\dfrac{AF}{AB}=\dfrac{FH}{BK}\Rightarrow FH=\dfrac{AF}{AB}.BK=x.BK\)
Ta có: \(a=\dfrac{1}{2}FH.AE=\dfrac{1}{2}.x.BK.y.AC=xy.\left(\dfrac{1}{2}BK.AC\right)=xy.S\)
Tương tự: \(b=\left(1-x\right)z.S\) ; \(c=\left(1-y\right)\left(1-z\right)S\)
\(\Rightarrow abc=xyz\left(1-x\right)\left(1-y\right)\left(1-z\right).S^3\)
\(=x\left(1-x\right).y\left(1-y\right)z.\left(1-z\right).S^3\)
\(\le\dfrac{1}{4}\left(x+1-x\right).\dfrac{1}{4}\left(y+1-y\right).\dfrac{1}{4}\left(z+1-z\right)S^3=\dfrac{1}{64}S^3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\) hay D, E, F lần lượt là trung điểm các cạnh tương ứng
a: Xét ΔEBC có
I là trung điểm của EC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔEBC
Suy ra: \(IF=\dfrac{EB}{2}\left(1\right)\)
Xét ΔAEC có
I là trung điểm của EC
D là trung điểm của AE
Do đó: ID là đường trung bình của ΔAEC
Suy ra: \(ID=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra IF=ID
hay ΔIDF cân tại I
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A