K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

  + M là trung điểm của AB

  + N là trung điểm của BC

  \(\Rightarrow MN\) là đường trung bình của \(\Delta ABC\)

  \(\Rightarrow MN//AC\)

 

a: Xét ΔABH vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH\(\sim\)ΔCAB

Suy ra: \(\dfrac{AB}{CA}=\dfrac{HB}{AB}\)

hay \(AB^2=HB\cdot BC\)

b: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC 

hay MN\(\perp\)AB

20 tháng 7 2017

M là trug điểm BC

MN //AB                  

nên MN là đường trung bình của AB , AB=2MN=30 

- Áp dụng hệ thức lương vào tam giác vuông MNC (vuông tại N)

   ta có \(\frac{1}{NK^2}=\frac{1}{NM^2}+\frac{1}{NC^2}\)

=> ta tìm dc NC   mà AC=2NC

vậy ta biết dc 2 cạnh AB và AC

diện h tam giác \(=\frac{1}{2}.AB.AC\)

5 tháng 8 2018

Gíup em vs ạ

7 tháng 7 2020

A B C M N K

a) Áp dụng hệ thức lượng △NMC vuông tại N ta có :

    \(\frac{1}{MN^2}+\frac{1}{NC^2}=\frac{1}{NK^2}\)

\(\Leftrightarrow\frac{1}{15^2}+\frac{1}{NC^2}=\frac{1}{12^2}\)

\(\Leftrightarrow NC=20\)cm

Ta có : △ABC vuông tại A có AM là đường trung tuyến (M thuộc BC)

=> AM = MC

=> △AMC cân tại M

=> MN đồng thời vừa là đường cao vừa là đường trung tuyến

=> AN = NC = \(\frac{AC}{2}\)

Mà NC = 20cm

=> AC = 40cm 

=> \(S_{AMC}=\frac{40.15}{2}=300\left(cm^2\right)\)

Ta có : \(S_{AMC}=\frac{1}{2}S_{ABC}\)

vì có cùng độ dài đường cao và \(MC=\frac{1}{2}BC\)

Vậy \(S_{ABC}=600cm^2\)

2 tháng 10 2016

A B C H M N O a

a/ Ta có BH = a-5 = 13-5 = 8 (cm) , CH = a+5 = 13+5 = 18 (cm)

Dễ thấy AMHN là hình chữ nhật => AH = MN

Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông,ta có : \(AH^2=BH.CH=8.18=144\Rightarrow AH=MN=12\)

b/ Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/677639.html