Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: ΔADE\(\sim\)ΔABC(cmt)
nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AC}{AD}\)
Xét ΔACE và ΔABD có
\(\dfrac{AE}{AB}=\dfrac{AC}{AD}\)(cmt)
\(\widehat{BAD}\) chung
Do đó: ΔACE\(\sim\)ΔABD(c-g-c)
Suy ra: \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
a) Xét ΔADE và ΔABC có
\(\widehat{AED}=\widehat{ACB}\)(gt)
\(\widehat{EAD}\) chung
Do đó: ΔADE\(\sim\)ΔABC(g-g)
Xét ΔADE và ΔABC co
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
Xét ΔABE và ΔACD có
AB/AC=AE/AD
góc A chung
=>ΔABE đồng dạng với ΔACD
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.
a) Ta thấy ngay \(\Delta ABE=\Delta ACD\) (Hai cạnh góc vuông)
b) Do \(\Delta ABE=\Delta ACD\Rightarrow\widehat{ABE}=\widehat{ACD}\)
mà \(\widehat{ABE}=\widehat{MAC}\) (Cùng phụ với góc BEA)
\(\Rightarrow\widehat{MAC}=\widehat{MCA}\) hay tam giác MAC cân tại M.
c) Xét tam giác vuông ADC: \(\widehat{MCA}=\widehat{MAC}\Rightarrow\widehat{MDA}=\widehat{MAD}\Rightarrow MD=MA\)
Vậy thì DM = MA = MC hay M là trung điểm DC.
Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.
Suy ra K là trung điểm IC.
d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.
Gọi N là giao điểm của CG với DE thì DN = NI.
Áp dụng định lý Talet ta có:
\(\frac{MF}{DN}=\frac{CF}{CN}=\frac{FK}{NI}\)
Mà DN = NI nên MF = FK.
1, Xét ΔADE và ΔABC có:
Góc AED = góc ACB (gt)
Góc BAC chung
⇒ ΔADE ~ ΔABC (g.g)
2, Theo câu a ta có: ΔADE ~ ΔABC ⇒ \(\dfrac{AC}{AB}=\dfrac{AE}{AD}\)
Xét ΔAEC và ΔADB có:
Góc BAC chung
\(\dfrac{AC}{AB}=\dfrac{AE}{AD}\) (cmt)
⇒ ΔAEC ~ ΔADB (c.g.c)
⇒ góc ABD = góc ACE