K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

a, Bạn chứng minh : tam giác ABH=EBH ( hai cạnh góc vuông) => AB=BE

tam giác ABM=CMF ( c.g.c ) => CF=AB 

=> BE=CF=AB

22 tháng 2 2018

b, Chứng minh tam giác AHM=EHM ( hai cạnh góc vuông )

=> AM=EM mà AM=AF nên ME=MF (đpcm)

22 tháng 11 2017

Bạn vẽ hình đi mk làm cho nha

22 tháng 11 2017

kẻ hình ra đi rồi tao giải cho

1 tháng 2 2018

a) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì MA = ME. Lại có MA = MF nên ME = MF.

b) Do AME là tam giác cân, MH là đường cao nên MH cũng là phân giác.

Vậy thì \(\widehat{AMB}=\widehat{BME}\)

Mà \(\widehat{AMB}=\widehat{CMF}\Rightarrow\widehat{BME}=\widehat{CMF}\)

Xét tam giác BME và CMF có:

BM = CM

ME = MF

\(\widehat{BME}=\widehat{CMF}\)

\(\Rightarrow\Delta BME=\Delta CMF\left(c-g-c\right)\)

\(\Rightarrow BE=CF\)

c) Dễ thấy \(\Delta BMF=\Delta CMA\left(c-g-c\right)\Rightarrow\widehat{BFM}=\widehat{CAM}\)

Chúng lại ở vị trí so le trong nên AC//BF.

d) Xét tam giác AEF có MA = ME = MF nên AEF là tam giác vuông. Vậy \(AE\perp EF\)

Lại có \(AE\perp BC\Rightarrow\) BC//EF

20 tháng 10 2018

Hình vẽ 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAEF có

FH là đường trung tuyến

FC=2/3FH

Do đó: C là trọng tâm của ΔAEF

=>AC là đường trung tuyến ứng với cạnh FE

mà M là trung điểm của FE

nên A,C,M thẳng hàng

1 tháng 5 2020

A B C H M F E I K

, M là trung điểm của BC ⇒ MB = MC

Xét ΔMBA và ΔMCE có:

MB = MC

\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

MA = ME

=> ΔMBA = ΔMCE (c.g.c) (đpcm)

b, Xét 2 tam giác vuông ΔBHA và ΔBHF có:

BH chung; \(\widehat{ABH}=\widehat{FBH}\) (do góc ABx nhận BC là tia phân giác)

 => ΔBHA = ΔBHF (cạnh góc vuông - góc nhọn)

=>  AB = BF mà AB = CE (do ΔMBA = ΔMCE)

=> CE = BF (đpcm)

c, Ta thấy: \(\widehat{FBC}=\widehat{ABC}=\widehat{ECB}\)

 => ΔKBC cân tại K mà KM là trung tuyến

=>  KM là phân giác của \(\widehat{BKC}\) (1)

ΔKBC cân tại K ⇒ KB = KC mà BF = CE
⇒ KB - BF = KC - CE ⇒ KF = KE

Ta chứng minh được ΔBEK = ΔCFK (c.g.c)

=> \(\widehat{EBK}=\widehat{FCK}\)

=.> ΔBIF = ΔCIE (g.c.g)

=> IF = IE ⇒ ΔIFK = ΔIEK (c.c.c)

 \(\Rightarrow\widehat{IKF}=\widehat{IKF}\)

⇒ KI là phân giác của ^BKC (2)

Từ (1) và (2) suy ra M, I, K thẳng hàng (đpcm)

30 tháng 12 2021
Not giải dc
15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD