Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì ΔABC đều
nên AB=AC=BC
mà BC=CE
nên AB=AC=BC=CE
b: Xét ΔABE có
AC là đường trung tuyến
AC=BE/2
Do đó: ΔABE vuông tại A
c: Ta có; ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
A) XÉT \(\Delta BAH\)VÀ\(\Delta CAH\)CÓ
\(\widehat{H_1}=\widehat{H_2}=90^o\)
\(AB=AC\left(GT\right)\)
AH LÀ CẠNH CHUNG
=>\(\Delta BAH\)=\(\Delta CAH\)(ch-cgv)
\(\Rightarrow BH=CH\)
\(\Rightarrow BH=CH=\frac{BC}{2}=\frac{18}{2}=9\left(cm\right)\)
THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta BAH\)VUÔNG TẠI H
\(\Rightarrow AB^2=HA^2+HB^2\)
\(\Rightarrow15^2=HA^2+9^2\)
\(\Rightarrow225=HA^2+81\)
\(\Rightarrow HA^2=225-81\)
\(\Rightarrow HA^2=144\)
\(\Rightarrow HA=\sqrt{144}=12\left(cm\right)\)
b) XÉT \(\Delta BAH\)VÀ\(\Delta BDH\)CÓ
\(AH=DH\left(GT\right)\)
\(\widehat{BHA}=\widehat{BHD}=90^o\)
BH LÀ CẠNH CHUNG
=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)
=>\(\widehat{ABH}=\widehat{DBH}\)
=> BH LÀ PHÂN GIÁC CỦA \(\widehat{ABD}\)HAY \(BE\)LÀ PHÂN GIÁC CỦA\(\widehat{ABD}\)
C) VÌ AH=DH => EH LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AED\)
TA CÓ \(BC=CE\)
THAY \(BH+HC=CE\)(VÌ BH+HC=BC)
MÀ \(BH=CH\left(CMT\right)\)
\(\Rightarrow2HC=CE\)
MÀ EH LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AED\)
=> C LÀ TRỌNG TÂM CỦA \(\Delta AED\)TA CÓ DI=IE => AI LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA\(\Delta AED\)MÀ C LÀ TRỌNG TÂM CỦA \(\Delta AED\)=> C BẮT BUỘT NẰM TRÊN AI => BA ĐIỂM A,C,I THẲNG HÀNG
b: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB và CD=AB