Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé bạn!!!!
a) Xét tam giác ANE và tg BNC có
góc ẢNE= góc BNC( đối đỉnh )
BN=NE ( gt)
AN=NC( N td AC)
suy ra tg ANE= góc BNC ( c.g.c)
suy ra góc AEN = góc NBC( hai góc tuơng ứng)
suy ra AE//BC( hai góc slt) (1)
Xét tg DAM và tg CBM có
góc DAM= góc CMB
AM=BM (M td AB)
DM=MC( GT)
Suy ra tg DAM= tg CMB( C.g.c)
suy ra góc ADM= góc MCB( hai góc t/ư)
Suy ra DA//BC( hai góc so le trong) (2)
Từ (1) và (2) suy ra D,A,E thẳng hàng( tiên đề Ơ-clít)
b)Xét tam giác ABC có AM=BM(gt)
AN=NC(gt)
suy ra MN là đuơng trung bình tam giác ABC SUy ra MN//BC
MN=1/2 BC
MÀ DE // BC(cmt) suy ra MNED là hình thang
Ta lại có AE=BC(tg ANE=tg BNC)
AD= BC(TG ADM=tg MCB)
suy ra AE+AD=2bc
suy ra DE=2BC
mà MN=1/2 BC
SUY ra MN=1/4DE
a:Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm của AB
N là trung điểm của CE
Do đó:AEBC là hình bình hành
SUy ra: AE//BC và AE=BC
=>AE=AD
Ta có: AE//BC
AD//BC
mà AE,AD có điểm chung là A
nên A,E,D thẳng hàng
mà AD=AE
nên A là trung điểm của DE
\(AD=AC\Rightarrow\)△CAD cân tại A mà AM là trung tuyến.
\(\Rightarrow\)AM cũng là đường phân giác.
\(\Rightarrow\widehat{MAE}=\dfrac{\widehat{BAE}}{2}\left(1\right)\)
\(AE=AB\Rightarrow\)△BAE cân tại A mà AN là trung tuyến.
\(\Rightarrow\)AN cũng là đường phân giác.
\(\Rightarrow\widehat{CAN}=\dfrac{\widehat{CAD}}{2}\left(2\right)\)
Ta có: \(\widehat{BAE}=\widehat{CAD}\) (đối đỉnh), nên từ (1) và (2) suy ra:
\(\widehat{EAM}=\widehat{CAN}\)
Mà \(\widehat{EAM}+\widehat{CAM}=180^0\) (kề bù)
\(\Rightarrow\widehat{CAN}+\widehat{CAM}=180^0\)
\(\Rightarrow\widehat{MAN}=180^0\)
\(\Rightarrow\)M,A,N thẳng hàng.
a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AB
hay AMNB là hình thang
mà \(\widehat{MAB}=90^0\)
nên AMNB là hình thang vuông