K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

1) dùng 2 góc đồng vị (góc B với M hoặc góc C với N)

2) cm 2 góc BAE và CAE bằng nhau 

suy ra tam giác BAE = tam giác CAE

suy ra AB  = AC; EB = EC

nên AE là đường trung trực của  BC

suy ra AE vuông góc với BC

cm AI vuông gõ với BC suy ra A,I, E thẳng hàng

22 tháng 1 2020

c.ơn bn

a) Xét ΔANI và ΔCNM có 

AN=CN(N là trung điểm của AC)

\(\widehat{ANI}=\widehat{CNM}\)(hai góc đối đỉnh)

NI=NM(gt)

Do đó: ΔANI=ΔCNM(c-g-c)

b) Ta có: ΔANI=ΔCNM(cmt)

nên AI=MC(hai cạnh tương ứng)

Ta có: ΔANI=ΔCNM(cmt)

nên \(\widehat{IAN}=\widehat{MCN}\)(hai góc tương ứng)

mà \(\widehat{IAN}\) và \(\widehat{MCN}\) là hai góc ở vị trí so le trong

nên MC//AI(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔABC có

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

hay MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)

d) Xét ΔANE và ΔCNF có 

NA=NC(N là trung điểm của AC)

\(\widehat{EAN}=\widehat{FCN}\)(cmt)

AE=CF(gt)

Do đó: ΔANE=ΔCNF(c-g-c)

hay \(\widehat{ANE}=\widehat{CNF}\)(hai góc tương ứng)

mà \(\widehat{ANE}+\widehat{ENC}=180^0\)(hai góc kề bù)

nên \(\widehat{CNF}+\widehat{CNE}=180^0\)

\(\Leftrightarrow\widehat{FNE}=180^0\)

hay E,N,F thẳng hàng(đpcm)

4 tháng 1 2021

Thanks bn nhavui

a: Xét tứ giác AMCD có

N là trung điểm của AC

N là trung điểm của MD

Do đó:AMCD là hình bình hành

Suy ra: CD//AM và CD=AM

=>CD//MB và CD=MB

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC

18 tháng 3 2022

giúp mik với mai mik thi r

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)