Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
Lấy D thuộc tia đối của tia MA sao cho: MA =MD
Chứn minh MAB=MDC (c.g.c)
suy ra AB=CD ( Hai cạnh tương ứng)
tam giác ACD có: AD < AC +CD (Bất đẳng thức tam giác)
suy ra AD< AC+ AB
mà AD=2AM
suy ra 2AM< AC+AB
suy ra AM < (AB+ AC)/2 (đpcm)
CM : AM < (AB+BC):2 Tren tia AM lay D / M la trung diem AD cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD ta co : AD AM < ( AC+AB):2 - cm ( AB+AC-BC):2 < AM ta co : AB < AM+BM ( bdt trong tam giac ABM ) AC< AM+MC ( bdt trong tam giac AMC ) ==> AB+AC < AM+BM+AM+MC
:34
- CM : AM < (AB+BC):2
Tren tia AM lay D / M la trung diem AD
cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD
ta co : AD<AC+CD ( bdt trong tam giac ACD)
ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)
nen 2AM< AC+AB
--> AM < ( AC+AB):2
- cm ( AB+AC-BC):2 < AM
ta co : AB < AM+BM ( bdt trong tam giac ABM )
AC< AM+MC ( bdt trong tam giac AMC )
==> AB+AC < AM+BM+AM+MC
----> A