K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

B C F E A N M Chỉ mang t/c minh họa

M là trung điểm của AC và BE (gt)

=> AM = MC ; ME = MB

Xét ∆AME và ∆CMB có :

MA = MC (cmt)

^AME = ^CMB (đối đỉnh)

ME = MB (cmt)

=> ∆AME =∆CMB (c-g-c)

=> AE = BC (1)

2.  cmtt ý 1 có AF = BC (2)

Từ (1)(2) => AE = EF (3)

Theo ý 1 có ∆AME = ∆CMB

=> ^E1 = ^B1 

Mà ^E1 và ^B1 nằm ở vị trí so le trong

=> AE // BC (4)

Cmtt ta có : AF // BC (5)

Từ (4)(5) => A;F;E thẳng hàng   (6)

Từ (3)(6) => A là trung điểm EF

7 tháng 2 2020

Những câu trên hơi vô lí tí nên mình vẽ hình ra ! Câu a, b, c đều vô lí !

A B C M N E F H p

23 tháng 12 2020

a) Xét ΔAME và ΔCMB có 

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

⇒AE=BC(hai cạnh tương ứng)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)

mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔANF và ΔBNC có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

⇒AF=BC(hai cạnh tương ứng)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AE//BC(cmt)

và AF,AE có điểm chung là A

nên F,A,E thẳng hàng(1)

Ta có: AE=BC(cmt)

mà AF=BC(cmt)

nên AE=AF(2)

Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)

Xét tứ giác ABNC có 

M là trung điểm của đường chéo AM

M là trung điểm của đường chéo BC

Do đó: ANBC là hình bình hành

Suy ra: AB//CN

Xét tứ giác BECF có 

BE//CF

BE=CF

Do đó: BECF là hình bình hành

Suy ra: Hai đường chéo BC và EF cắt nhau tại trung điểm của mỗi đường

mà AN và BC cắt nhau tại trung điểm của mỗi đường

nên AN,BC,EF đồng quy

6 tháng 11 2019

a) +Xét tam giác AEN và tam giác BNC có :
AN=BN (gt)

∠ANE=∠CNB ( 2 góc đối đỉnh )
EN=NC (gt)
=> tam giác AEN= tam giác BNC ( c.g.c )
=> AE=BC (1)
+ Xét tam giác AMD và tam giác CMB có :
AM=MC (gt)

∠AMD=∠CMB ( 2 góc đối đỉnh )
MD=MB (gt)
=> tam giác AMD = tam giác CMB (c.g.c)
=> AD=BC (2)
Từ (1),(2) => AE=AD
b) Ta có : ∠ABC + ∠BAC + ∠BCA = 180
Mà ∠ABC = ∠EAB ( tam giác AEN = tam giác BCN )
∠ACB = ∠CAD ( tam giác AMD = tam giác CMB )
=> ∠CAD + ∠BAC + ∠EAB = 180
=> E,A,D thẳng hàng

6 tháng 11 2019

nối c với e

ta thấy abce là hình bình hành 

vì có 2 dường chéo ac và be cắt nhau tại trung điểm mỗi đường

suy ra ae song song và bằng bc (1)

nối b với e

ta thấy acbf là hình bình hành 

vì có 2 dường chéo ab và ec cắt nhau tại trung điểm mỗi đường

suy ra af song song và bằng bc (2)

từ (1) và (2) suy ra AE = AF = BC

                              A là trung điểm EF 

a: Xét tứ giác ACBF có 

N là trung điểm của CF

N là trung điểm của AB

Do đó: ACBF là hình bình hành

Suy ra: AF=BC

b: Xét tứ giác AECB có

M là trung điểm của AC

M là trung điểm của BE

Do đó: ABCE là hình bình hành

Suy ra:AE//BC và AE=BC

mà AF/BC

và AE,AF có điểm chung là A

nên A,E,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

c: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình

=>MN//BC

hay MN//FE

25 tháng 2 2021

- Xét tg ABC và AFE có :

AB=AF(gt)

AC=AE(gt)

\(\widehat{FAE}=\widehat{BAC}\left(đđ\right)\)

=> Tg ABC=AFE(c.g.c)

=> EF=BC

Mà : \(BM=\frac{BC}{2}\left(gt\right)\)

\(FN=\frac{FE}{2}\left(gt\right)\)

=> BM=FN

- Xét tg ABM và AFN có :

AB=AF(gt)

BM=FN(cmt)

\(\widehat{B}=\widehat{F}\)(do tg ABC=AFN)

=> Tg ABM=AFN(c.g.c)

#H

6 tháng 12 2016

đợi mình 5 phút

6 tháng 12 2016

                                                                                  Giải

a) vì m la trung diểm của BC => BM=MC

Xét tam giac BAM va tam giac MAC có:

AB=AC(dề bài cho)

BM=MC(Chung minh tren)

AM la cạnh chung(de bai cho)

=>Tam giác BAM=tam giac MAC(c.c.c)

b)từ trên

=>góc BAM=góc MAC(hai goc tuong ung)

Tia AM nam giua goc BAC (1)

goc BAM=goc MAC(2)

từ (1) va (2)

=>AM la tia phan giac cua goc BAC

c)Còn nữa ......-->