Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bài ra ta có: \(\overrightarrow{AM}=\dfrac{1}{2}.\overrightarrow{AB}\)
\(\overrightarrow{AN}=3.\overrightarrow{NC}\) => \(\overrightarrow{AN}=3.\left(\overrightarrow{AC}-\overrightarrow{AN}\right)\) => \(4.\overrightarrow{AN}=3.\overrightarrow{AC}\)
=> \(\overrightarrow{AN}=\dfrac{3}{4}.\overrightarrow{AC}\)
=> \(\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\dfrac{3}{4}.\overrightarrow{AC}-\dfrac{1}{2}.\overrightarrow{AB}\)
b) Xét tam giác ABC, theo định lý Talet có: \(\dfrac{CN}{CA}=\dfrac{CP}{CB}=\dfrac{1}{3}\)
=> NP// AB => \(\dfrac{NP}{AB}=\dfrac{CN}{CA}=\dfrac{1}{4}\) => \(\overrightarrow{NP}=\dfrac{1}{4}.\overrightarrow{AB}\)
=> \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{NP}=\dfrac{3}{4}.\overrightarrow{AC}-\dfrac{1}{2}.\overrightarrow{AB}+\dfrac{1}{4}.\overrightarrow{AB}=\dfrac{-1}{2}.\overrightarrow{AB}+\dfrac{3}{4}.\overrightarrow{AC}\)
Em ms hok cái này nên ko chắc lăm ạ :D
Theo quy tắc 3 điểm\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}\)
\(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{MN}\)
Có I là TĐ của BC\(\Rightarrow\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{BC}=0\) (1)
Có I là TĐ của MN \(\Rightarrow\overrightarrow{EM}+\overrightarrow{EN}=\overrightarrow{MN}=0\) (2)
Từ (1) và (2)\(\Rightarrowđpcm\)
Hình vẽ:
Lời giải:
$E$ là trung điểm $BC$ nên:
$\overrightarrow{BE}+\overrightarrow{CE}=\overrightarrow{0}$ (2 vecto đối nhau)
$E$ là trung điểm của $MN$ nên:
$\overrightarrow{ME}+\overrightarrow{NE}=\overrightarrow{0}$
(hai vecto đối nhau)
Từ đây ta có:
$\overrightarrow{AB}+\overrightarrow{AC}=(\overrightarrow{AB}+\overrightarrow{BE})+(\overrightarrow{AC}+\overrightarrow{CE})=\overrightarrow{AE}+\overrightarrow{AE}$
$=\overrightarrow{AM}+\overrightarrow{ME}+\overrightarrow{AN}+\overrightarrow{NE}$
$=\overrightarrow{AM}+\overrightarrow{AN}+(\overrightarrow{ME}+\overrightarrow{NE})$
$=\overrightarrow{AM}+\overrightarrow{AN}$
Ta có đpcm.