Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có: BED=BME=BAM(vì chung đường cao hạ từ B; đáy ED=ME=AM)
BAE= BMD(vì chung đường cao hạ từ B; AE=MC=2 AM)
b, Ta có:EBD và DEC có BD=2/3 DC chung đường cao hạ từ E
Nên SEBD = 2/3 SECD => SDEC = 4 : 2 x 3 = 6 (cm2)
Theo hình vẽ, ta có: AD=ED x3(vì AM=ME=ED)
Ta có: ABD và EBD có: AD = ED x 3, chung đường cao hạ từ B.
Nên SABD = SEBD x 3 = 4 x 3 = 12 (cm2)
Mà BD= 2/3 DC hay BD = 2/5 BC
Vậy SABC = SABD : 2 x 5 = 12 : 2 x 5 = 30 (cm2)
*.SAEC = SABC – SABD – SEDC = 30 – 12 – 6 = 12 (cm2)
2 hình tam giác ABE có: DT=4+4=8 cm2; CBE có:DT=4+6=10 cm2
2 tam giác có chung đáy BE nên tỉ số đường cao hạ từ B và đường cao hạ từ C là:8/10 hay 4/5
Diện tích AEG là :12 : (4+5) x 4 = 16/3 (cm2)
Diện tích ACG là: 12 : (4+5) x 5 = 20/3 (cm2)
2 tam giác này có chung đường cao hạ từ E nên 2 đáy tỉ lệ với 2 diện tích
Tỉ lệ của AG và GC là 16/3 : 20/3 = 16/20 = 4/5
2/5 x 1/X + 1/X x 2 = 0,1
1/X x ( 2/5 + 2 ) = 0,1
1/X x 12 / 5 = 0,1
1/X = 0,1 :12/5 = 1/10 : 12/5
1/X = 1/24
Vậy X = 24
a: \(S_{ABD}=\dfrac{1}{2}\cdot48=24\left(cm^2\right)\)
=>\(S_{ABI}=12\left(cm^2\right)\)
b: Kẻ DE//BK
Xét ΔADE có
I là trung điểm của AD
IK//DE
=>IK là đường trung bình
=>IK=1/2DE
Xét ΔKBC có DE//BK
nên DE/BK=CD/CB=1/2
=>BK=2DE=4IK
Kẻ MK vuông góc AC
\(S_{AME}=\dfrac{1}{2}\cdot MK\cdot AE\)
\(S_{MEC}=\dfrac{1}{2}\cdot MK\cdot EC\)
mà AE=1/4*EC
nên \(S_{AME}=\dfrac{1}{4}\cdot S_{MEC}\)
=>\(S_{MEC}=80\left(cm^2\right)\)
a, đổi 3m=300cm độ dài BE là: 300:2=150(cm) diện tích EAD là: (150+300)x5:2=1145cm2 b,ABCD là hình chữ nhật nên AB=CD. vậy BE=1/2CD xét tam giác BED và tam giác BEC: -đáy BE=1/2CD -chiều cao chung( đều là chiều rộng hình chữ nhật ABCD) 2 tam giác này chung phần diên tích tam giác BEM nên: S BED-S BEM=S BEC - SBEM hay: S BMD=S EMC đợi mik nghĩ nốt câu c nhé!
a) D là trung điểm của BC nên CD = DB; E là trung điểm của AD nên AE = ED
S(ABD) = S(ADC) vì có đáy CD = DB và chung đường cao tương ứng với đáy
=> S(ABD) = S(ADC) = 1/2 S(ABC)
S(ABE) = S(EBD) vì có đáy AE = ED và có chung đường cao tương ứng với đáy
=> S(ABD) = S(EBC) = 1/2 S(ABD) = 1/4 S(ABC)
Tương tự trên
=> S(AEC) = S(EDC = 1/2 S(ADC) = 1/4 S(ABC)
Vậy : S(ABD) = S(EBC) = S(AEC) = S(EDC) = 1/4 S(ABC)
b) Nhìn hình ta thấy
AG = 1/2 GC