Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) E thuộc tia phân giác của \(\widehat{CBH}\)
\(\Rightarrow\)EG = EH (tính chất tia phân giác) (1)
E thuộc tia phân giác của \(\widehat{BCK}\)
\(\Rightarrow\)EG = EK (tính chất tia phân giác) (2)
Từ (1) và (2) suy ra: EH = EG = EK
b) EH = EK
\(\Rightarrow\)E thuộc tia phân giác của \(\widehat{BAC}\)mà E khác A
Vậy AE là tia phân giác của \(\widehat{BAC}\)
c) AE là tia phân giác góc trong tại đỉnh A.
AF là tia phân giác góc ngoài tại đỉnh A.
\(\Rightarrow AE\perp AF\) (tính chất hai góc kề bù)
Hay \(AE\perp DF\)
d) Chứng minh tương tự câu a ta có BF là tia phân giác của \(\widehat{ABC}\)
CD là tia phân giác của \(\widehat{ACB}\)
Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC
e) BF là phân giác góc trong tại đỉnh B.
BE là phân giác góc ngoài tại đỉnh B.
\(\Rightarrow BF\perp BE\) (tính chất hai góc kề bù)
Hay \(BF\perp ED\)
CD là đường phân giác góc trong tại C
CE là đường phân giác góc ngoài tại C
\(\Rightarrow CD\perp CE\)(tính chất hai góc kề bù)
Hay \(CD\perp EF\)
Các đường thẳng AE, FB, DC là các đường cao trong tam giác DEF.
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)