K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VM
7 tháng 1 2020
a) Vì \(\Delta ABD\) và \(\Delta ACE\) đều (gt).
=> \(\left\{{}\begin{matrix}AD=AB\\AC=AE\\\widehat{DAB}=\widehat{EAC}=60^0\end{matrix}\right.\) (tính chất tam giác đều).
Vì \(\widehat{DAB}=\widehat{EAC}\left(cmt\right)\)
=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\)
=> \(\widehat{DAC}=\widehat{BAE}.\)
Xét 2 \(\Delta\) \(ADC\) và \(ABE\) có:
\(AD=AB\left(cmt\right)\)
\(\widehat{DAC}=\widehat{BAE}\left(cmt\right)\)
\(AC=AE\left(cmt\right)\)
=> \(\Delta ADC=\Delta ABE\left(c-g-c\right)\)
=> \(DC=BE\) (2 cạnh tương ứng).
Chúc bạn học tốt!
tu ve hinh :
tamgiac ACE vuong can tai A => AE = AC va goc EAC = 90 do (dn) (3)
tamgiac ABD vuong can tai A => AD = AB va goc BAD = 90 do (dn) (4)
goc EAC + goc CAB = goc EAB (1)
goc DAB + goc BAC = goc DAC (2)
(1)(2) => goc EAB = goc DAC (5)
(3)(4)(5) => tamgiac AEB = tamgiac ACD (c - g - c)
=> EB = CD (dn)