K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

undefinedundefined

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

6 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠B = ∠CAH (cùng phụ C)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/HC = HB/AH

⇒ AH.AH = HB.HC

⇒ AH² = HB.HC

Xét hai tam giác vuông: ∆ABC và ∆HAC có:

∠C chung

⇒ ∆ABC ∽ ∆HAC (g-g)

⇒ AC/HC = BC/AC

⇒ AC.AC = HC.BC

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 3² + 4²

= 25

⇒ BC = 5 (cm)

Do AD là tia phân giác của ∠BAC

⇒ BD/CD = AB/AC

⇒ AB/BD = AC/CD 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

AB/BD = AC/CD = (AB + AC)/(BD + CD) = (3 + 4)/5 = 7/5

Do AB/BD = 7/5

⇒ BD = AB.5/7 = 3.5/7 = 15/7 (cm)

a: Xét ΔBAE vuông tại A và ΔBHD vuông tại H có

góc ABE=góc HBD

=>ΔBAE đồng dạng với ΔBHD

b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vói ΔABC

b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)

AH=3*4/5=2,4cm

HB=4^2/5=3,2cm

c: FH/FA=BH/BA

EA/EC=BA/BC

BH/BA=BA/BC

=>FH/FA=EA/EC

2 tháng 5 2021

a, theo pitago đảo: 21+282=1225=352 suy ra tam giác ABC vuông

b,theo pitago

AH2=AB2-BH2=AC2-CH2 suy ra 2AH2=AB2+AC2-BH2-CH

suy ra 2AH2=BC2-BH2-CH2 (Mà BC=BH+CH) suy ra 2AH2=2BHxCH

1: Xét tứ giác AFDE có

\(\widehat{AFD}=\widehat{AED}=\widehat{FAE}=90^0\)

Do đó: AFDE là hình vuông

2: Xét ΔBED vuông tại E và ΔBHA vuông tại H có 

\(\widehat{B}\) chung

Do đó; ΔBED∼ΔBHA

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)