K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra DE//IK và DE=IK

 

8 tháng 10 2021

A B C D E I K M N

a/

ED=EA; DC=DA => ED là đường trung bình của tg ABC \(\Rightarrow ED=\frac{BC}{2}\Rightarrow BC=2.ED\)

=> ED//BC => BEDC là hình thang mà

MB=ME; NC=ND => MN là đường trung bình của hình thang BEDC \(\Rightarrow MN=\frac{ED+BC}{2}\)

b/

MN là đường trung bình của hình thang BEDC => ED//MN//BC

Xét tg BDE có

MB=ME; MI//ED => IB=ID (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> MI là đường trung bình của tg BDE \(\Rightarrow MI=\frac{ED}{2}\) (1)

Chứng minh tương tự ta cũng có KN là đường trung bình của tg CDE \(\Rightarrow KN=\frac{ED}{2}\) (2)

Ta có \(IK=MN-\left(MI+KN\right)=\frac{ED+BC}{2}-\left(MI+KN\right)=\)

\(=\frac{ED+2.ED}{2}-\left(\frac{ED}{2}+\frac{ED}{2}\right)=\frac{ED}{2}\) (3)

Từ (1) (2) và (3) => MI=IK=KN