K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

a,Xét  ΔΔAMN có : AN=NM 

⇒⇒góc NAM =góc NMA

mà góc NMA= góc MAB (vì MN song song với AB)

nên góc NAM =góc MAB hay MA là tia phân giác góc BAC

Xét ΔΔABC ta có:

AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC 

⇒⇒ΔΔABC cân tại A

b, Theo câu a ta có :ΔΔABC cân tại A 

                      ⇒⇒góc ABC = góc NCM

Mà góc NMC = góc ABC

NÊN  góc NMC= góc NCM

⇒⇒ ΔΔNMC cân tại N 

⇒⇒MN=NC 

mà NM=AN

Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC 

Ta có: AM là đường trung tuyến ứng với cạnh BC 

        BN là đường trung tuyến ứng với cạnh AC 

mà BN cắt AM tại O

Nên O là trọng tâm của tam giác ABC

a,Xét  ΔΔAMN có : AN=NM 

⇒⇒góc NAM =góc NMA

mà góc NMA= góc MAB (vì MN song song với AB)

nên góc NAM =góc MAB hay MA là tia phân giác góc BAC

Xét ΔΔABC ta có:

AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC 

⇒⇒ΔΔABC cân tại A

b, Theo câu a ta có :ΔΔABC cân tại A 

                      ⇒⇒góc ABC = góc NCM

Mà góc NMC = góc ABC

NÊN  góc NMC= góc NCM

⇒⇒ ΔΔNMC cân tại N 

⇒⇒MN=NC 

mà NM=AN

Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC 

Ta có: AM là đường trung tuyến ứng với cạnh BC 

        BN là đường trung tuyến ứng với cạnh AC 

mà BN cắt AM tại O

Nên O là trọng tâm của tam giác ABC

15 tháng 4 2017

a,Xét  \(\Delta\)AMN có : AN=NM 

\(\Rightarrow\)góc NAM =góc NMA

mà góc NMA= góc MAB (vì MN song song với AB)

nên góc NAM =góc MAB hay MA là tia phân giác góc BAC

Xét \(\Delta\)ABC ta có:

AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC 

\(\Rightarrow\)\(\Delta\)ABC cân tại A

b, Theo câu a ta có :\(\Delta\)ABC cân tại A 

                      \(\Rightarrow\)góc ABC = góc NCM

Mà góc NMC = góc ABC

NÊN  góc NMC= góc NCM

\(\Rightarrow\) \(\Delta\)NMC cân tại N 

\(\Rightarrow\)MN=NC 

mà NM=AN

Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC 

Ta có: AM là đường trung tuyến ứng với cạnh BC 

        BN là đường trung tuyến ứng với cạnh AC 

mà BN cắt AM tại O

Nên O là trọng tâm của tam giác ABC

6 tháng 5 2018

Đủ 5 s rồi

a: Sửa đề ΔAMC

Xét ΔAMC và ΔDMB có

góc MCA=góc MBD

MC=MB

góc AMC=góc DMB

=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB

=>AC=BD

=>BD=AB

c: Xét ΔBAD có

BM,DP là trung tuyến

BM cắt DP tại O

=>O là trọng tâm

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)