Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét ΔΔAMN có : AN=NM
⇒⇒góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét ΔΔABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
⇒⇒ΔΔABC cân tại A
b, Theo câu a ta có :ΔΔABC cân tại A
⇒⇒góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
⇒⇒ ΔΔNMC cân tại N
⇒⇒MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC
a,Xét ΔΔAMN có : AN=NM
⇒⇒góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét ΔΔABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
⇒⇒ΔΔABC cân tại A
b, Theo câu a ta có :ΔΔABC cân tại A
⇒⇒góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
⇒⇒ ΔΔNMC cân tại N
⇒⇒MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC
a,Xét \(\Delta\)AMN có : AN=NM
\(\Rightarrow\)góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét \(\Delta\)ABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
\(\Rightarrow\)\(\Delta\)ABC cân tại A
b, Theo câu a ta có :\(\Delta\)ABC cân tại A
\(\Rightarrow\)góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
\(\Rightarrow\) \(\Delta\)NMC cân tại N
\(\Rightarrow\)MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC
a: Sửa đề ΔAMC
Xét ΔAMC và ΔDMB có
góc MCA=góc MBD
MC=MB
góc AMC=góc DMB
=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB
=>AC=BD
=>BD=AB
c: Xét ΔBAD có
BM,DP là trung tuyến
BM cắt DP tại O
=>O là trọng tâm
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)