Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//EC
=>C,E,D thẳng hàng
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: MA=2,5cm
MB<AB
=>góc BAM<góc AMB
c: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hbh
mà góc BAC=90 độ
nên ABNC là hcn
=>CN vuông góc CA
Lời giải:
a.
Xét tam giác $AMB$ và $EMC$ có:
$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)
$AM=EM$
$MB=MC$
$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)
b.
Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$
Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$
Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)
c.
Vì $\triangle AMB=\triangle EMC$ nên:
$AB=EC$
Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$
Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)
$AC$ chung
$EC=BA$ (cmt)
$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)
$\Rightarrow EA=BC$
Mà $EA=2AM$ nên $2AM=BC$ (đpcm)
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
a) xét tam giác ABM = DCM( c-g-c ) (*)
=) * góc BAD = góc ADC
=) AB // CD
* AB = DC ( 1 )
xét tam giác ABH= EBH ( c-g-c )
=) AB = BE ( 2 )
từ (1) và (2)=) CD=BE
b) ( đề sai, phải là CD vuông góc AC mới đúng )
từ (*) =) góc ABM = DCM
mà tg ABC vuông tại A=) ABM+ACB=90 độ
suy ra góc DCM+ACB=90 độ
=) CD vuông góc vs AC
c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC
d) Do AM = 1/2BC
=) BC = 10cm
áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:
AB^2 + AC^2 = BC^2
AB^2 = 36
AB = 6cm
Bn tự vẽ hình nha!!!
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
MB = MC (M là trung điểm BC (gt))
\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)
MA = MD (gt)
\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)
b) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\) AB // CD
c) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\) AB = DC (2 cạnh tương ứng)Vì AB // CD (cmt)\(AB \perp AC \)\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)Xét \(\Delta ABC\) và \(\Delta CDA\) có:\(\widehat{BAC} = \widehat{DCA} = 90^0 \)AB = CD (cmt)AC chung\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)\(\Rightarrow\) AD = BC (2 cạnh tương ứng)mà \(AM=\frac{1}{2}AD\)\(\Rightarrow AM=\frac{1}{2}BC\)
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn
a.
MB = MC (AM là trung tuyến)
\(\widehat{AMB}\) = \(\widehat{EMC}\) (Góc đối)
MA = ME (Giả thuyết)
=> Tam giác ABM = Tam giác ECM (Cạnh - góc - cạnh)
b.
Tam giác ABM = Tam giác ECM
ABM là tam giác vuông tại B
=> Tam giác ECM vuông tại C
=> EC vuông góc BC
Mà AB vuông góc BC
=> EC song song AB
c.
Ta có
\(\widehat{BAM}\) = 180o - 90o - \(\widehat{AMB}\)(1)
\(\widehat{MAC}\) = 180o - \(\widehat{ACM}\) - \(\widehat{AMC}\)
=> \(\widehat{MAC}\) = 180 - \(\widehat{ACM}\) - (180o - \(\widehat{AMB}\))
=> \(\widehat{MAC}\) = \(\widehat{ACM}\) - \(\widehat{AMB}\)(2)
(1) và (2) => \(\widehat{BAM}\) > \(\widehat{MAC}\)(Vì góc \(\widehat{ACM}\) < 90o)