K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

bạn ghi cách ra sẽ dễ thấy hơi á

Sửa đề: ΔABC vuông tại A

a: MB/NH=BH^2/AB:CH^2/AC

=BH^2/CH^2*AC/AB

=(AB/AC)^4*AC/AB=AB^3/AC^3

b: BC*BM*CN

=BC*BH^2/AB*CH^2/AC

=AH^4/AH=AH^3

c: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nen AN*AC=AH^2

ΔABC vuông tại A có AH vuông góc BC

nên HB*HC=AH^2

=>HB*HC=AM*AB

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>AH=MN

=>AM*AB=HB*HC=MN^2

d: BM*BA+AN*AC

=BH^2+AH^2=AB^2=BH*BC

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b) Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(hai đường chéo)(3)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)(4)

Từ (3) và (4) suy ra \(DE^2=HB\cdot HC\)

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)