K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2023

Ta có : \(S_{ABC}=\dfrac{AH.BC}{2}\)

Kẻ đường cao từ B xuống AC tại E do đó :

\(S_{ABC}=\dfrac{BE.AC}{2}\)

mà \(BE< AB\) ( AB là cạnh huyền trong tam giác ABE )

Do đó :

\(\dfrac{AB.AC}{2}\ge\dfrac{BE.AC}{2}=\dfrac{AH.BC}{2}\)

\(\Rightarrow AB.AC\ge AH.BC\left(đpcm\right)\)

Dấu bằng xảy ra khi và chỉ khi : BE trùng với AB

\(\Leftrightarrow\Delta ABC\) vuông tại A .

 

26 tháng 8 2019

A B C H

Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)

Xét \(\Delta AHC\)và \(\Delta ABC\)có :

\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)

\(\widehat{C}\)chung 

\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )

Hay \(\Delta ABC\)vuông tại A ( đpcm ) 

12 tháng 3 2018

Gợi ý: Xét các tam giác đồng dạng để chứng minh

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB

20 tháng 2 2016

nói thật chứ bài nay tui lop 7 lam dc

28 tháng 3 2016

ban giup mk giai bai tren dc k mk dang can