Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Xét △ABK có :IM//BK;I∈AB;M∈AK
Theo Đlí ta-lét ,ta có :
\(\frac{AI}{AB}=\frac{AM}{AK}\) (1)
⇒AI.AK=AM.AK
+)Xét ▲AIC có :NK//IC;N∈AI;K∈AC
Theo ĐLí ta-lét ,ta có :
\(\frac{AN}{AI}=\frac{AK}{AC}\) (2)
⇒AN.AC=AK.AI(4)
Từ (3) và (4) ,áp dụng Đlí Ta-lét đảo ,ta có :
=>-\(\frac{AN}{AB}=\frac{AM}{AC}\)
=>MN//BC(đpcm)
a: Xét ΔACB và ΔCEK có
góc ACB=góc CEK(=góc AED)
góc BAC=góc KCE
=>ΔACB đồng dạng với ΔCEK
b: Xét ΔHEK và ΔHCB có
góc HEK=góc HCB
góc EHK=góc CHB
=>ΔHEK đồng dạng với ΔHCB
=>EK/CB=HE/HC
=>EK*HC=CB*HE
a: Xét tứ giác MNCP có
MP//CN
MN//CP
Do đó: MNCP là hình bình hành