Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(AB=AC\)
\(\Rightarrow\Delta ABC\)là tam giác cân
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Do \(\widehat{ACB}\)và \(\widehat{KCE}\)là 2 góc đối đỉnh
\(\Rightarrow\widehat{ACB}=\widehat{KCE}\)
Xét \(\Delta BDH\)(vuông) và \(\Delta CEK\)(vuông) có:
\(BD=CE\)
\(\widehat{DBH}=\widehat{ECK}\left(=\widehat{ACB}\right)\)
\(\Rightarrow\Delta BDH=\Delta CEK\left(ch.gn\right)\)
\(\Rightarrow HD=EK\)
Ta có:
\(\widehat{DIH}=\widehat{KIE}\)(đối đỉnh)
\(\widehat{DHI}=\widehat{EKI}\)(=90O)
\(\Rightarrow\widehat{HDI}=\widehat{KEI}\)
Xét \(\Delta DHI\)và \(\Delta EKI\)có:
\(\widehat{DHI}=\widehat{EKI}\)
\(HD=EK\)
\(\widehat{HDI}=\widehat{KEI}\)
\(\Rightarrow\Delta DHI=\Delta EKI\left(g.c.g\right)\)
\(\Rightarrow DI=IE\)
Do \(\hept{\begin{cases}DI< DE\\DI=IE\end{cases}}\)
Vậy I là trung điểm DE
HE=DK
=> HDEK là hình chữ nhật mà I là giao 2 đường chéo
=> ID=IE
Xét tam giác ADI và AEI có AD=AE , AI chung , ID=IE
=> tam giác ADI=tam giác AEI
=> góc DAI= góc EAI
=> AI là phân giác góc DAE ( Mà tam giác DAE cân ở A có AI phân giác )
=> AI cũng là đường cao
=> AI vuông góc vs DE
a, Ta có : \(\Delta\)ABC cân tại A (gt)
\(\Rightarrow\)Góc B = góc \(C_1\)
Mà góc \(C_1=C_2\)(đối đỉnh)
\(\Rightarrow\)Góc B = góc \(C_2\)
Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :
BD=CE (gt)
Góc B = góc C\(_2\)(cmt)
\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)
\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)
Vậy...
b, Ta có : DH và EK cùng vuông góc vs BC (gt)
\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)
\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )
Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :
DH=CE (\(\Delta BEH=\Delta CEK\))
Góc HDI = góc IEC (cmt)
\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)
\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )
Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )
\(\Rightarrow\)I là trung điểm của BC
Vậy...
Chúc bn hok tốt