K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2021

Bán kính đường tròn ngoại tiếp của ΔABC là:

R=a√3 / 3=4√3 / 3(cm)

9 tháng 9 2021

Bán kính đường tròn ngoại tiếp của ΔABC là:

R=a√3 / 3=4√3 / 3(cm)

10 tháng 6 2017

Gọi O là giao 3 đường trung trực của ∆ABC. Khi đó O là tâm đường tròn ngoại tiếp ∆ABC. Gọi H là giao điểm của AO và BC. Ta có : AH =  3 cm

OA = 2 3 AH =  2 3 3 cm

30 tháng 10 2016

Bạn tự vẽ hình nhé !

Gọi\(\Delta ABC\)đều có O vừa là tâm đường tròn ngoại tiếp vừa là trọng tâm ; AH vừa là đường cao vừa là trung tuyến 

=> HB = BC/2 = 3/2 = 1,5 (cm) =>\(\Delta AHB\)vuông tại H có :\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-\left(1,5\right)^2}=\frac{3\sqrt{3}}{2}\left(cm\right)\)

=> Bán kính đường tròn ngoại tiếp là : AO =\(\frac{2}{3}.AH=\frac{2}{3}.\frac{3\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)(vì O là trọng tâm)

9 tháng 10 2019

Mik ko b

30 tháng 5 2021

-từ S hình vuông => cạnh tam giác =4

- BK= \(R=\frac{1}{2}.\frac{4}{\cos30}=\frac{4}{\sqrt{3}}\left(cm\right)\)

4 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì O là tâm đường tròn ngoại tiếp tam giác ABC nên O là giao điểm của ba đường trung trực trong tam giác ABC.

Kẻ AH ⊥ BC. Ta có: O ∈ AH

Trong tam giác vuông ABH, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC đều nên AH là đường cao cũng đồng thời là trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy chọn đáp án C.

AH
Akai Haruma
Giáo viên
12 tháng 4 2021

Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.

Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:

$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$

Bán kính đường tròn ngoại tiếp của ΔABC là:

\(R=\dfrac{a\sqrt{3}}{3}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

30 tháng 8 2021

 bạn làm vậy r mik hiểu sao