Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADE có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó:ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
nên AB=AE và BD=ED
=>AD là đường trung trực của BE
c: Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đo: ΔDBF=ΔDEC
d: XétΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
xét \(\Delta ABM\)và \(\Delta ACM\)có:
AB=AC(gt)
AM chung
góc AMC=góc ABM=\(90^0\)
=>\(\Delta ABM=\Delta ACM\)(cạnh huyền-cạnh góc vuông)
=>CM=BM(2 cạnh tương ứng)
=>M là trung điểm của đoạn thẳng BC
AB = AC
=> Tam giác ABC cân tại A
Xét tam giác MAB vuông tại M và tam giác MAC vuông tại M có:
AB = AC (gt)
B = C (tam giác ABC cân tại A)
=> Tam giác MAB = Tam giác MAC (cạnh huyền - góc nhọn)
=> MB = MC (2 cạnh tương ứng)
=> M là trung điểm của BC.