K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

a)  Tứ giác  \(AEHF\)có:    \(\widehat{A}=\widehat{E}=\widehat{F}=90^0\)

\(\Rightarrow\)\(AEHF\) là hình chữ nhật

Xét  \(\Delta AEH\)và   \(\Delta CFH\) có:

\(\widehat{AEH}=\widehat{CFH}=90^0\)

\(\widehat{EAH}=\widehat{FCH}\)  (cùng phụ với góc HAC)

suy ra:    \(\Delta AEH~\Delta CFH\) (g.g)

a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có

góc B chung

=>ΔBHE đồng dạngvơi ΔBAH

b: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

c,d: Xét ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC và CH^2=CF*CA

e: AE*AB=AF*AC=AH^2

=>AE/AC=AF/AB

mà góc EAF chung

nên ΔAEF đồng dạng với ΔACB

12 tháng 12 2020

a) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo trong hình chữ nhật AEHF)

23 tháng 4 2020

tui hoc l 6

23 tháng 4 2020

Ớ hok dốt lắm tớ k bít làm đâu

25 tháng 2 2019

A B C H

Giải: a) Ta có : \(S_{\Delta ABC}\)\(\frac{AH.BC}{2}\) (1)

                      \(S_{\Delta ABC}\)\(\frac{AB.AC}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)

b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)

Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625

=> BC = 25

Ta có: AH.BC = AB.AC (cmt)

hay AH. 25 = 15.20

=> AH.25 = 300

=> AH = 300 : 25

=> AH = 12

c) chưa hc

20 tháng 3 2022

Xét tam giác AEH và tam giác AHB, có:

\(\widehat{AHB}=\widehat{AEH}=90^0\)

\(\widehat{A}:chung\)

Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )