Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: H đối xứng D qua AB
nên ABlà trung trực của HD
=>AH=AD và ABvuông góc với HD tại I
=>ΔAHD cân tại A
=>AB là phân giác của góc HAD(1)
H đối xứng E qua AC
nên AC vuông góc với HE tại trung điểm của HE
=>AC là phân giác của góc HAE(2)
Xét tứ giác AIHK có
góc AIH=góc AKH=góc KAI=90 độ
nên AIHK là hình chữ nhật
b: Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
c: BD+CE=BH+CH=BC
Xét tứ giác AIHE có
\(\widehat{AIH}=\widehat{AEH}=\widehat{EAI}=90^0\)
Do đó: AIHE là hình chữ nhật
Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
hay \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Do đó: ΔAIK\(\sim\)ΔACB
Suy ra: \(\widehat{AIK}=\widehat{ACB}\)
a: Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
Do đó: AIHK là hình chữ nhật