K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

a)

Tam giác ABC có:

BAC + ABC + ACB = 1800

600 + ABC + ACB = 1800

ABC + ACB = 1800 - 600

ABC + ACB = 1200

BI là tia phân giác của ABC

=> ABI = IBC = ABC : 2

CI là tia phân giác của ACB

=> ACI = CIB = ACB : 2

Tam giác IBC có:

BIC + IBC + ICB = 1800

BIC + ABC : 2 + ACB : 2 = 1800

BIC + \(\frac{1}{2}\) . (ABC + ACB) = 1800

BIC + 1200 : 2 = 1800

BIC + 600 = 1800

BIC = 1800 - 600

BIC = 1200

b)

FI là tia phân giác của BIC

=> CIF = FIB = BIC : 2 = 1200 : 2 = 600

EIB + BIC = 1800

EIB + 1200 = 1800

EIB = 1800 - 1200

EIB = 600

mà FIB = 600 (chứng minh trên)

=> EIB = FIB

Xét tam giác EIB và tam giác FIB có:

EIB = FIB (chứng minh trên)

IB chung

IBE = IBF (IB là tia phân giác của ABC)

=> Tam giác EIB = Tam giác FIB (g.c.g)

c)

EIB = DIC (2 góc đối đỉnh)

CIF = FIB (FI là tia phân giác của BIC)

mà EIB = FIB (chứng minh trên)

=> DIC = CIF

Xét tam giác CIF và tam giác CID có:

FIC = DIC (chứng minh trên)

IC chung

ICF = ICD (IC là tia phân giác của ACB)

=> Tam giác CIF = Tam giác CID (g.c.g)

=> IF = ID (2 cạnh tương ứng)

mà IF = IE (Tam giác EIB = Tam giác FIB)

=> IF = IE = ID

d)

CF = CD (Tam giác CIF = Tam giác CID)

EB = FB (Tam giác EIB = Tam giác FIB)

=> EB + CD = FB + CF = BC

10 tháng 9 2021

\(a,\widehat{A}+\widehat{B}+\widehat{C}=180\\ \Rightarrow180-3\widehat{C}+\widehat{C}+70=180\\ \Rightarrow-2\widehat{C}=-70\\ \Rightarrow\widehat{C}=35\\ \Rightarrow\widehat{A}=180-35=145\)

 

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

5 tháng 5 2021

a, Xét tg ABE và tg AHE

có A1 = A2

5 tháng 5 2021

a, Xét tg ABE và tg AHE

có A1 = A2 [ do AE là pg  góc BAH [ GT ]

AE là cạnh chung

=>  Tg ABE = tg AHE [ cạnh huyền - góc nhọn]

b, Ta có tg ABC vuông tại B [ GT]

=>  BAC + ACB = 90 độ [ Tc tgv ]

hay 60 độ + 

 

 

31 tháng 7 2019

a: Xét ΔABC có 

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)

\(\Leftrightarrow\widehat{BIC}=120^0\)