Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc DFC=góc EBC
góc EFC=góc DAC
góc EBC=góc DAC
=>góc DFC=góc EFC
a) Ta có: OA⊥d(gt)
d//d'(gt)
Do đó: OA⊥d'(Định lí 1 từ vuông góc tới song song)
hay AE⊥BE
Xét tứ giác ABFE có
\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)
\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
đây nhé, cậu chịu khó tự vẽ hình vậy
câu a, ta có MN//AB(đường trung bình ) nên \(\widehat{MNC}=\widehat{BAC}\)
mà \(\hept{\begin{cases}\widehat{MNC}+\widehat{ONM}=90^o\\\widehat{BAC}+\widehat{ABH}=90^o\end{cases}}\) => \(\widehat{ABH}=\widehat{MNO}\)
b) kẻ \(BK⊥BC=B\) (K là giao của OC với BK)
ta có \(OM=\frac{1}{2}BK\Rightarrow O\) là trung điểm của KC=>ON //AK( đường tb)
mà ON//BH=>AK//BH và ta có BK//AH nên AKBH là hình bình hành => BK=AH => 2OM=AH
mà 2GM=AG =>\(\frac{GM}{OM}=\frac{AG}{AH}\) (1)
mặt khác ta có \(\widehat{HAM}=\widehat{OMG}\) (so le trong ) (2)
từ (1) và (2) =>tam giác AHG đồng dặng với tam giác MOG(ĐPCM)
c) dựa vào câu b nhé
dễ mà
a, ta có
tam giác ABH đồng dạng với tam giác MNO (g.g) (chứng minh = cách sd t/c cua 2 góc có cạnh t/ứ //)
=> AH/OM = AB /MN =2 => DPCM
b,Gọi giao điểm của HO và AM là G'
cần chứng minh G' trùng G
Ta c/m đc tam giác AG'H đồng dạng tg MG'O
=> AG' /MG' =AH/MO =2 => G' chia đoạn AM theo ti số 2:1 => G' là trọng tâm => G' trùng G
=> ĐPCM
vậy là 3 k nhé
*****
a) Vì d là tiếp tuyến của (O) tại A
⇒ OA ⊥ D mà d // d'
⇒ OA ⊥ D tại E
⇒ \(\widehat{AEB}=90^0\)
Suy ra: điểm E thuộc đường tròn đường kính AB (1)
Ta có: AF ⊥ BC ⇒ \(\widehat{AFB}=90^0\)
Suy ra: điểm F thuộc đường tròn đường kính AB (2)
Từ (1) và (2): ⇒ A, B, E, F cùng thuộc đường tròn đường kính AB
Từ đó: tam giác ABFE nội tiếp
b) Ta có: \(\widehat{ACB}=\widehat{IAB}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến cùng chắn cung AB )
Lại có: \(\widehat{ABD}=\widehat{IAB}\) ( so le trong )
⇒ \(\widehat{ABD}=\widehat{ACB}\)
Xét △ ABD và △ ACB có:
\(\widehat{ABD}=\widehat{ACB}\) ( cmt )
\(\widehat{A}\) chung
⇒ △ ABD ∼ △ ACB ( g - g )
Từ đó: \(\dfrac{AB}{AD}=\dfrac{AC}{AB}\Leftrightarrow AB^2=AC.AD\) ( đpcm )
c) Theo câu a, ta có: tam giác ABFE nội tiếp
⇒ \(\widehat{ABE}=\widehat{AFE}\) ( 2 góc nội tiếp cùng chắn cung AE )
Mà \(\widehat{ABE}=\widehat{ACB}\Rightarrow\widehat{AFE}=\widehat{ACB}\) (3)
Ta có: M là trung điểm của AB và N là trung điểm của BC
⇒ MN là đường trung bình △ ABC
⇒ MN // AC
⇒ \(\widehat{BMN}=\widehat{ACB}\) ( đồng vị ) (4)
Từ (3) và (4): \(\widehat{AFE}=\widehat{BNM}\)
Mà \(\widehat{AFE}+\widehat{NFE}=90^0\Rightarrow\widehat{BNM}+\widehat{NFE}=90^0\)
Gọi H là giao điểm của EF và MN
⇒ \(\widehat{FNH}=90^0\)
⇒ EF ⊥ MN ( đpcm )