Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài chưa cho số ddo của đoạn thẳng thì làm sao mà tính được hử bạn?
đề bài sai là cái chắc!!!!!!!!!!!!!!!
Câu hỏi của Huỳnh Thúy Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Giải:
Kẻ OI là tia phân giác của \(\widehat{AOC}\)
Xét \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+60^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+\widehat{C}=120^o\)
Ta có: \(\frac{1}{2}\left(\widehat{A}+\widehat{C}\right)=\frac{1}{2}.120^o\)
\(\Rightarrow\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{C}=60^o\)
\(\Rightarrow\widehat{A_1}+\widehat{C_1}=60^o\)
Xét \(\Delta AOC\) có: \(\widehat{A_1}+\widehat{C_1}+\widehat{AOC}=180^o\)
\(\Rightarrow60^o+\widehat{AOC}=180^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widehat{O_2}=\widehat{O_3}\left(=\frac{1}{2}\widehat{AOC}\right)\)
\(\Rightarrow\widehat{O_2}=\widehat{O_3}=60^o\)
Ta có: \(\widehat{O_4}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\) )
\(\Rightarrow\widehat{O_4}=60^o\)
\(\widehat{O_1}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\)
\(\Rightarrow\widehat{O_1}=60^o\)
Xét \(\Delta EOA,\Delta IOA\) có:
\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)
AO: cạnh chung
\(\widehat{O_1}=\widehat{O_2}\left(=60^o\right)\)
\(\Rightarrow\Delta EOA=\Delta IOA\left(g-c-g\right)\)
\(\Rightarrow OE=OI\) ( cạnh t/ứng ) (1)
Xét \(\Delta DOC,\Delta IOC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)
OC: cạnh chung
\(\widehat{O_3}=\widehat{O_4}\left(=60^o\right)\)
\(\Rightarrow\Delta DOC=\Delta IOC\left(g-c-g\right)\)
\(\Rightarrow OD=OI\) ( cạnh t/ứng ) (2)
Từ (1) và (2) \(\Rightarrow OE=OD\left(=OI\right)\)
Vậy \(OE=OD\)