K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

A B C M H K D

a. Vì AM vuông góc với CK và AM vuôn góc với BH nên BH// KC 

=> KCM = MBH( hai góc so le trong)

Xét tam giác HBM và tam giác KCM có:

HMB = KMC ( hai góc đối đỉnh )

MC = MC ( M là trung điểm của BC)

KCM = MBH (cmt)

Do đó : Tam giác HBM = tam giác KCM ( g-c-g)

=> HM = KM ( hai cạnh tương ứng) - đpcm

b. Xét Tam giác KBM và tam giác HCM có:

BM = CM ( M là trung điểm của BC)

BMK = CMH ( hai góc đối đỉnh)

MK = MH ( câu a)

Do đó:  tam giác KBM  =  tam giác HCM (c-g-c)

=> BK = HC ( hai cạnh tương ứng ) - đpcm

c. Vì AB // CD nên (GT)

+ ABC = BCD ( hai góc so le trong)

+ DCB = BCA ( hai góc so le trong)

Xét tam giác ABC và tam giác DCB có:

ABC = BCD (cmt)

BC là cạnh chung

DCB = BCA (cmt)

Do đó : Tam giác ABC = tam giác DCB ( g-c-g)

=> CD = BA ( hai cạnh tương ứng ) - đpcm

5 tháng 2 2021

bn tự vẽ nha

a. Vì AM vuông góc với CK và AM vuôn góc với BH nên BH// KC 

=> KCM = MBH( hai góc so le trong)

Xét tam giác HBM và tam giác KCM có:

HMB = KMC ( hai góc đối đỉnh )

MC = MC ( M là trung điểm của BC)

KCM = MBH (cmt)

Do đó : Tam giác HBM = tam giác KCM ( g-c-g)

=> HM = KM ( hai cạnh tương ứng) 

b. Xét Tam giác KBM và tam giác HCM có:

BM = CM ( M là trung điểm của BC)

BMK = CMH ( hai góc đối đỉnh)

MK = MH ( câu a)

Do đó:  tam giác KBM  =  tam giác HCM (c-g-c)

=> BK = HC ( hai cạnh tương ứng ) 

c. Vì AB // CD nên (GT)

+ ABC = BCD ( hai góc so le trong)

+ DCB = BCA ( hai góc so le trong)

Xét tam giác ABC và tam giác DCB có:

ABC = BCD (cmt)

BC là cạnh chung

DCB = BCA (cmt)

Do đó : Tam giác ABC = tam giác DCB ( g-c-g)

=> CD = BA ( hai cạnh tương ứng ) 

a: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có

MB=MC

góc HMB=góc KMC

DO đó ΔHMB=ΔKMC

Suy ra: HM=KM

b: Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

Suy ra: BK=CH

7 tháng 3 2020

Em tham khảo:

3 tháng 1 2022

lỗi 

23 tháng 12 2020

đề sai rồi

23 tháng 12 2020

đề sai rồi