Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔANE và ΔCNB có
NA=NC
\(\widehat{ANE}=\widehat{CNB}\)
NE=NB
Do đó: ΔANE=ΔCNB
Suy ra: \(\widehat{AEN}=\widehat{CBN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC
b: Xét ΔAMD và ΔBMC có
MA=MB
\(\widehat{AMD}=\widehat{BMC}\)
MD=MC
Do đó: ΔAMD=ΔBMC
a/ Xét t/g AMD và t/g BMC có
AM = BM (M là TĐ AB)
\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)
=> t/g AMD = t/g BMC (c.g.c)
b/ Xets t/g BMD và t/g AMC có
BM = AM
\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)
=> t/g BMD = t/g AMC (c.g.c)
=> \(\widehat{ABD}=\widehat{BAC}=90^o\)
=> BD ⊥ AB (1)
c/ Xét t/g BNE và t/g CNA có
BN = CN (N là TĐ BC)
\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)
=> T/g BNE = t/g CNA (c.g.c)
=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)
=> BE ⊥ AB (2) Từ (1) và (2)
=> D , B , E thẳng hàng
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE
a) xét tam giác AME và tam giác BMC có
AM = MB ( gt)
góc AME = góc BMC (đđ)
ME=MC(gt)
=> tam giác AME = tam giác BMC (cgc)
=> AE=BC ( cctư) (1)
=> góc EAM = góc MBC (cgtư)
mà chúng ở vị trí so le trong nên AE//BC
b Xét tam giác AES và tam giác CDS có
AS=CS(gt)
góc ASE= góc CSD (đđ)
ES=SD (gt)
=> tam giác AES= tam giác CDS (cgc)
=>CD=AE(2)
từ (1) &(2)=> CD=BC
mặt khác ta có tam giác AES = tam giác CDS (cmt)
=> góc EAS= góc DCS ( cgtư)
mà chúng ở vị trí so le trong nên AE // CD
Ta có AE//BC (cmt)
AE//CD (cmt)
=> BCD thẳng hàng
mà BC=CD (cmt)
=> C là trung điểm BC
cc laf j\