Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ADB}=\widehat{C}+\widehat{CAD}\)(tính chất góc ngoài)
b: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: \(\widehat{ADB}=\widehat{ADC}\)
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
a: \(\widehat{BAD}+\widehat{B}+\widehat{ADB}=\widehat{CAD}+\widehat{C}+\widehat{ADC}\left(=180^0\right)\)
\(\Leftrightarrow\widehat{B}+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)
mà \(\widehat{B}>\widehat{C}\)
nên \(\widehat{ADB}< \widehat{ADC}\)
a, Ta có ^ADC = 1800 - ^C - ^DAC
^ADB = 1800 - ^B - ^BAD
mà ^DAC = ^BAD ( AD là pg )
^B > ^C (gt)
=> ^ADC > ^ADB