Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) vì cùng vuông góc với AC
b ) ta có HAC + HCA = 90 độ
ABC + HCA = 90 độ
nên HAC=ABC
ta có HAC + AHE=90 độ
mà HAC = ABC = 60 độ
nên AHE = 90-60 = 30 độ
BAH + HAC = 90 độ
BAH = 90 - 60 = 30 độ
a, Theo bài cho : góc A = 90độ
=> AB vuông góc với AC
mà HE cũng vuông góc với AC
=> AB // HE .
b,Xét tam giác ABC vuông tại A có :
góc B + góc C = 90độ ( 1 )
=> góc C = 90độ - 60độ
=> góc C = 30độ
Xét tam giác AHB vuông tại H nên góc BAH + góc B = 90độ ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : góc C = góc BAH
=> góc BAH = 30độ
Theo câu a : AB // HE
=> góc BAH = góc AHE ( ở vị trí so le trong )
=> góc AHE = 30độ
Vậy góc AHE = góc BAH = 30độ .
Học tốt
a, A=90o là góc vuông (AB\(\perp\)AC)
HE\(\perp\)AC
\(\Rightarrow\)AB // HE
b,AH\(\perp\)BC \(\Rightarrow\)\(\widehat{BHA}\)= 90o
\(\widehat{BAH}\)= 180o - (\(\widehat{ABC}\)+ \(\widehat{BHA}\))
\(\Rightarrow\)\(\widehat{BAH}\)= 180o - ( 60o + 90o )
\(\Rightarrow\)\(\widehat{BAH}\)= 180o - 150o
\(\Rightarrow\)\(\widehat{BAH}\)= 30o
AB // HE (cmt)
\(\widehat{BAH}\)= \(\widehat{AHE}\)= 30o (so le trong)
mk tính góc BAH trước nha bn !!!..........^^
a) Vì \(\widehat{A}=90^o\rightarrow AB\perp AC\)
Mà \(HE\perp AC\)
-> AB song song với HE
b) Vì AB song song với HE (theo a)
=> \(\widehat{ABH}=\widehat{EHC}=50^o\)(2 góc đồng vị)
Ta có: \(\widehat{AHE}+\widehat{EHC}=\widehat{AHC}\)
\(\Rightarrow\widehat{AHE}+50^o=90^o\left(AH\perp BC\right)\)
\(\Rightarrow\widehat{AHE}=90^o-50^o=40^o\)
Vì AB song song với HE
=> \(\widehat{AHE}=\widehat{BAH}=40^o\)(2 góc so le trong)
a)
AB vuông góc AC (vì tam giác ABC vuông tại A)
HE vuông góc AC (giả thiết)
AB và HE cùng vuông góc AC nên chúng song song nhau
b)
Vì AB // HE nên:
góc B = góc EHC = 600
Vì AH vuông góc BC nên:
góc AHE + góc EHC = 900
=> góc AHE = 900 - góc EHC = 900 - 600 = 300
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \(\widehat{B}=60^o\); \(\widehat{BHA}=90^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
Do AB//HE
=> \(\widehat{BAH}=\widehat{AHE}=30^o\)
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \widehat{B}=60^oB=60o; \widehat{BHA}=90^oBHA=90o
\Rightarrow\widehat{BAH}=30^o⇒BAH=30o
Do AB//HE
=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o