Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc B<góc C
nên AB>AC
Xét ΔABC có
AB>AC
HB,HC lần lượt là hình chiếu của AB,AC trên BC
=>HB>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB>HC
=>MB>MC
c: MB>MC
=>góc MCB>góc MBC
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC
nên HB<HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB<HC
=>MB<MC
Bài 1 a, xét tam giác ABD và tam giác HBD có:
BD cạnh chung
\(\widehat{ABD}\)=\(\widehat{HBD}\)(gt)
\(\Rightarrow\)tam giác ABD = tam giác HBD( CH-GN)
\(\Rightarrow\)AB=HB
b,trên tia đối của tia DH lấy O sao cho HD=DO
xét tam giác ADO và tam giác CDH có:
DH=DO( theo trên)
\(\widehat{ADO}\)=\(\widehat{CDH}\)( Vì đối đỉnh)
\(\Rightarrow\)tam giác ADO=tam giác CDH( CH-GN)\(\Rightarrow\)AD=CD
a: \(\widehat{B}< \widehat{C}\)
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
b: Xét ΔDBC có HB>HC
mà HB là hình chiếu của DB trên BC
và HC là hình chiếu của DC trên BC
nên DB>DC