K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có góc B<góc C

nên AB>AC

Xét ΔABC có

AB>AC

HB,HC lần lượt là hình chiếu của AB,AC trên BC

=>HB>HC

b: Xét ΔMBC có

HB,HC lần lượt là hình chiếu của MB,MC trên BC

HB>HC

=>MB>MC

c: MB>MC

=>góc MCB>góc MBC

a: BH<AB

CK<AC

=>BH+CK<AB+AC

b: BH<BD

CK<CD

=>BH+CD<BD+CD=BC

a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC

nên HB<HC

b: Xét ΔMBC có

HB,HC lần lượt là hình chiếu của MB,MC trên BC

HB<HC

=>MB<MC

4 tháng 3 2019

Bài 1  a, xét tam giác ABD và tam giác HBD có:

                   BD cạnh chung

                    \(\widehat{ABD}\)=\(\widehat{HBD}\)(gt)

 \(\Rightarrow\)tam giác ABD = tam giác HBD( CH-GN)

\(\Rightarrow\)AB=HB

b,trên tia đối của tia DH lấy O sao cho HD=DO

     xét tam giác ADO và tam giác CDH có:

                    DH=DO( theo trên)

                    \(\widehat{ADO}\)=\(\widehat{CDH}\)( Vì đối đỉnh)

\(\Rightarrow\)tam giác ADO=tam giác CDH( CH-GN)\(\Rightarrow\)AD=CD

a: \(\widehat{B}< \widehat{C}\)

nên AB>AC

Xét ΔABC có AB>AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB>HC

b: Xét ΔDBC có HB>HC

mà HB là hình chiếu của DB trên BC

và HC là hình chiếu của DC trên BC

nên DB>DC