Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau)
Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C .
dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC
áp dụng góc ngoài tam giác AMB
=> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB
vuông cân --> góc MDB = 45 độ --> tg EAD vuông cân
t i c k nhé!!!! 6767897854653164457575675676768797897897845665765
Ta có tam giác EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau)
Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C .
dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC
áp dụng góc ngoài tam giác AMB
=> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB
vuông cân --> góc MDB = 45 độ --> tg EAD vuông cân
Chúc bạn học tốt
xin lỗi bạn nha mik mới học lớp 5 nên không giải đc đâu bạn ơi
Ta có tg EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau)
Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C . Áo dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC
áp dung góc ngoài tg AMB --> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB vuông cân --> góc MDB = 45 độ
--> tg EAD vuông cân
a) Xét \(\Delta ABC\) có tia phân giác \(BAC,ACB\) cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\) (tính chất 3 đường phân giác của tam giác)
\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )
Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)
( tính chất của tia phân giác )
Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)
b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)
\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\) ( dấu hiệu nhận biết tia phân giác )
\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )
\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )
Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )
c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng
thật là ngược mộ nha
dù không biết đúng hay sai nhưng lâu lắm mới thấy người làm nguyên một bài toán hình thế này mà còn có hình nữa