K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

giúp mk vs

31 tháng 10 2019

a, vì Dx//BC =>GÓC xDA=ACB (so le trong ) . Mà xDA=70 độ =>góc ACB=70 độ

b,ta có : CAB +DAB=180 độ (KỀ BÙ) Mà CAB=40 độ

=>40 + DAB =180 => DAB=140

VÌ ; Ay là phân giác của góc BAD => DAy=BAy=BAD/2=140/2=70

mÀ xDA=70

=>xDA=DAy. 2 góc này ở vị trì so  le trong =>Dx//Ay. Dx//BC =>Ay//BC

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

a: \(\widehat{C}=90^0-30^0=60^0\)

c: Xét ΔCAD và ΔCMD có 
CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔCAD=ΔCMD

18 tháng 12 2016

a,b) A B C M D x y K 60* 30*

c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*

Xét ΔACD và ΔMCD, ta có:

CA=CM (gt)

\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)

Chung cạnh CD

Do đó: ΔACD = ΔMCD (c.g.c)

d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!

Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)

Xét ΔDAC va ΔKCA, ta có:

\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)

Chung cạnh AC

\(\widehat{DAC}=\widehat{KCA}=90\)*

Do đó: ΔDAC = ΔKCA (g.c.g)

=> AK=CD (2 cạnh tương ứng).

e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*

\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)

\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)

haha \(\Rightarrow\widehat{AKC}=60\)* ok

 

17 tháng 12 2016

góc C=60 độ

 

a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)

b: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

c: Xét ΔAMN có 

AB/BM=AC/CN

nên MN//BC

d: Ta có: ΔAMN cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

=>AI⊥MN

mà MN//BC

nên AI⊥BC

mà AD⊥BC

và AD,AI có điểm chung là A

nên D,A,I thẳng hàng

e: Xét ΔBEC có 

D là trung điểm của BC

DA//BE

Do đó: A là trung điểm của EC

16 tháng 7 2018

A B C D I K y x

a) Ta có AB = AC => ABC là tg cân ( cân tại A)

Xét \(\Delta ABD\)Và \(\Delta ACD\)

    \(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )

\(AC=AB\)

    AD LÀ CẠNH CHUNG 

=>  2 tam giác = nhau ( c.g.c )

b) Ta có  Ay//BC 

=>  \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )

Mà \(\widehat{ACB}=\widehat{ABC}\)

=> \(\widehat{yAC}=\widehat{ABC}\)

c) Ta có tg ABC cân 

=> AD là đg phân giác cũng là đường cao

=> \(AD\perp BC\)

MÀ  \(Cx\perp BC\)

=> AD//Cx

d) Ta có Ay ( AK) //BC 

Mà \(\widehat{ADC}=90^O\)

=> \(DA\perp Ay\)

Tứ giác AKCD là hình chữ nhâtk

mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )

=> I là trung điểm của DK