Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
a) Xét \(\Delta AMB\)và \(\Delta AMD\)có:
AB = AD (gt)
AM là cạnh chung
MB = MD (M là trung điểm của BD)
\(\Rightarrow\Delta AMB=\Delta AMD\left(c.c.c\right)\)
b) Ta có: \(\Delta AMB=\Delta AMD\)(theo a)
\(\Rightarrow\widehat{BAM}=\widehat{DAM}\)(2 góc tương ứng)
hay \(\widehat{BAK}=\widehat{DAK}\)
Xét \(\Delta AKB\)và \(\Delta AKD\)có:
AB = AD (gt)
\(\widehat{BAK}=\widehat{DAK}\left(cmt\right)\)
AK là cạnh chung
\(\Rightarrow\Delta AKB=\Delta AKD\left(c.g.c\right)\)
=> KB = KD (2 cạnh tương ứng)
c) Ta có: \(\Delta AKB=\Delta AKD\)(theo b)
\(\Rightarrow\widehat{ABK}=\widehat{ADK}=60^o\)(2 góc tương ứng)
Vì \(\widehat{ADK}\)là góc ngoài của \(\Delta DKC\)
\(\Rightarrow\widehat{ADK}=\widehat{DKC}+\widehat{DCK}\)
\(\Rightarrow60^o=\widehat{DKC}+40^o\)
\(\Rightarrow\widehat{DKC}=60^o-40^o=20^o\)
- Bạn tự vẽ hình được chứ ?
Giải :
a) Xét ∆AMB và ∆AMD có :
AB = AD (GT)
MB = MD (M là trung điểm của BD)
AM cạnh chung
=> ∆AMB = ∆AMD (c.c.c) (1)
b) Ta có : ∆AMB = ∆AMD (Theo (1))
=> ∠BAM = ∠DAM (2 góc tương ứng) (2)
Xét ∆ABK và ∆ADK có :
AB = AD (GT)
∠BAM = ∠DAM (Theo (2))
AK cạnh chung
=> ∆ABK = ∆ADK (c.g.c) (3)
=> KB = KD (2 cạnh tương ứng)
c) Lại có : ∆ABK = ∆ADK (Theo (3))
=> ∠ABK = ∠ADK (2 góc tương ứng)
Mà ∠ABK = 60o (GT)
(Ngoặc ''}'' 2 điều trên)
=> ∠ADK = 60o
Mà ∠ADK + ∠KDC = 180o (2 góc kề bù)
(Ngoặc ''}'' 2 điều trên)
=> 60o + ∠KDC = 180o
=> ∠KDC = 180o - 60o
=> ∠KDC = 60o (4)
Trong ∆CDK có : ∠DCK + ∠KDC + ∠DKC = 180o (Định lí)
=> ∠DKC = 180o - (∠DCK + ∠KDC)
Mà ∠DCK = 40o (GT)
∠KDC = 60o (Theo (4))
(Ngoặc ''}'' 3 điều trên)
=> ∠DKC = 180o - (40o + 60o)
=> ∠DKC = ... (Tự tính)
Vậy ...